File size: 13,467 Bytes
b6af722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Utility functions for the inference libraries."""

import os
from glob import glob
from typing import Any

import mediapy as media
import numpy as np
import torch

from cosmos_predict1.tokenizer.networks import TokenizerModels

_DTYPE, _DEVICE = torch.bfloat16, "cuda"
_UINT8_MAX_F = float(torch.iinfo(torch.uint8).max)
_SPATIAL_ALIGN = 16
_TEMPORAL_ALIGN = 8


def load_model(
    jit_filepath: str = None,
    tokenizer_config: dict[str, Any] = None,
    device: str = "cuda",
) -> torch.nn.Module | torch.jit.ScriptModule:
    """Loads a torch.nn.Module from a filepath.

    Args:
        jit_filepath: The filepath to the JIT-compiled model.
        device: The device to load the model onto, default=cuda.
    Returns:
        The JIT compiled model loaded to device and on eval mode.
    """
    if tokenizer_config is None:
        return load_jit_model(jit_filepath, device)
    full_model, ckpts = _load_pytorch_model(jit_filepath, tokenizer_config, device)
    full_model.load_state_dict(ckpts.state_dict(), strict=True)
    return full_model.eval().to(device)


def load_encoder_model(
    jit_filepath: str = None,
    tokenizer_config: dict[str, Any] = None,
    device: str = "cuda",
) -> torch.nn.Module | torch.jit.ScriptModule:
    """Loads a torch.nn.Module from a filepath.

    Args:
        jit_filepath: The filepath to the JIT-compiled model.
        device: The device to load the model onto, default=cuda.
    Returns:
        The JIT compiled model loaded to device and on eval mode.
    """
    if tokenizer_config is None:
        return load_jit_model(jit_filepath, device)
    full_model, ckpts = _load_pytorch_model(jit_filepath, tokenizer_config, device)
    encoder_model = full_model.encoder_jit()
    encoder_model.load_state_dict(ckpts.state_dict(), strict=True)
    return encoder_model.eval().to(device)


def load_decoder_model(
    jit_filepath: str = None,
    tokenizer_config: dict[str, Any] = None,
    device: str = "cuda",
) -> torch.nn.Module | torch.jit.ScriptModule:
    """Loads a torch.nn.Module from a filepath.

    Args:
        jit_filepath: The filepath to the JIT-compiled model.
        device: The device to load the model onto, default=cuda.
    Returns:
        The JIT compiled model loaded to device and on eval mode.
    """
    if tokenizer_config is None:
        return load_jit_model(jit_filepath, device)
    full_model, ckpts = _load_pytorch_model(jit_filepath, tokenizer_config, device)
    decoder_model = full_model.decoder_jit()
    decoder_model.load_state_dict(ckpts.state_dict(), strict=True)
    return decoder_model.eval().to(device)


def _load_pytorch_model(
    jit_filepath: str = None, tokenizer_config: str = None, device: str = "cuda"
) -> torch.nn.Module:
    """Loads a torch.nn.Module from a filepath.

    Args:
        jit_filepath: The filepath to the JIT-compiled model.
        device: The device to load the model onto, default=cuda.
    Returns:
        The JIT compiled model loaded to device and on eval mode.
    """
    tokenizer_name = tokenizer_config["name"]
    model = TokenizerModels[tokenizer_name].value(**tokenizer_config)
    ckpts = torch.jit.load(jit_filepath, map_location=device)
    return model, ckpts


def load_jit_model(jit_filepath: str = None, device: str = "cuda") -> torch.jit.ScriptModule:
    """Loads a torch.jit.ScriptModule from a filepath.

    Args:
        jit_filepath: The filepath to the JIT-compiled model.
        device: The device to load the model onto, default=cuda.
    Returns:
        The JIT compiled model loaded to device and on eval mode.
    """
    model = torch.jit.load(jit_filepath, map_location=device)
    return model.eval().to(device)


def save_jit_model(
    model: torch.jit.ScriptModule | torch.jit.RecursiveScriptModule = None,
    jit_filepath: str = None,
) -> None:
    """Saves a torch.jit.ScriptModule or torch.jit.RecursiveScriptModule to file.

    Args:
        model: JIT compiled model loaded onto `config.checkpoint.jit.device`.
        jit_filepath: The filepath to the JIT-compiled model.
    """
    torch.jit.save(model, jit_filepath)


def get_filepaths(input_pattern) -> list[str]:
    """Returns a list of filepaths from a pattern."""
    filepaths = sorted(glob(str(input_pattern)))
    return list(set(filepaths))


def get_output_filepath(filepath: str, output_dir: str = None) -> str:
    """Returns the output filepath for the given input filepath."""
    output_dir = output_dir or f"{os.path.dirname(filepath)}/reconstructions"
    output_filepath = f"{output_dir}/{os.path.basename(filepath)}"
    os.makedirs(output_dir, exist_ok=True)
    return output_filepath


def read_image(filepath: str) -> np.ndarray:
    """Reads an image from a filepath.

    Args:
        filepath: The filepath to the image.

    Returns:
        The image as a numpy array, layout HxWxC, range [0..255], uint8 dtype.
    """
    image = media.read_image(filepath)
    # convert the grey scale image to RGB
    # since our tokenizers always assume 3-channel RGB image
    if image.ndim == 2:
        image = np.stack([image] * 3, axis=-1)
    # convert RGBA to RGB
    if image.shape[-1] == 4:
        image = image[..., :3]
    return image


def read_video(filepath: str) -> np.ndarray:
    """Reads a video from a filepath.

    Args:
        filepath: The filepath to the video.
    Returns:
        The video as a numpy array, layout TxHxWxC, range [0..255], uint8 dtype.
    """
    video = media.read_video(filepath)
    # convert the grey scale frame to RGB
    # since our tokenizers always assume 3-channel video
    if video.ndim == 3:
        video = np.stack([video] * 3, axis=-1)
    # convert RGBA to RGB
    if video.shape[-1] == 4:
        video = video[..., :3]
    return video


def resize_image(image: np.ndarray, short_size: int = None) -> np.ndarray:
    """Resizes an image to have the short side of `short_size`.

    Args:
        image: The image to resize, layout HxWxC, of any range.
        short_size: The size of the short side.
    Returns:
        The resized image.
    """
    if short_size is None:
        return image
    height, width = image.shape[-3:-1]
    if height <= width:
        height_new, width_new = short_size, int(width * short_size / height + 0.5)
        width_new = width_new if width_new % 2 == 0 else width_new + 1
    else:
        height_new, width_new = (
            int(height * short_size / width + 0.5),
            short_size,
        )
        height_new = height_new if height_new % 2 == 0 else height_new + 1
    return media.resize_image(image, shape=(height_new, width_new))


def resize_video(video: np.ndarray, short_size: int = None) -> np.ndarray:
    """Resizes a video to have the short side of `short_size`.

    Args:
        video: The video to resize, layout TxHxWxC, of any range.
        short_size: The size of the short side.
    Returns:
        The resized video.
    """
    if short_size is None:
        return video
    height, width = video.shape[-3:-1]
    if height <= width:
        height_new, width_new = short_size, int(width * short_size / height + 0.5)
        width_new = width_new if width_new % 2 == 0 else width_new + 1
    else:
        height_new, width_new = (
            int(height * short_size / width + 0.5),
            short_size,
        )
        height_new = height_new if height_new % 2 == 0 else height_new + 1
    return media.resize_video(video, shape=(height_new, width_new))


def write_image(filepath: str, image: np.ndarray):
    """Writes an image to a filepath."""
    return media.write_image(filepath, image)


def write_video(filepath: str, video: np.ndarray, fps: int = 24) -> None:
    """Writes a video to a filepath."""
    return media.write_video(filepath, video, fps=fps)


def numpy2tensor(
    input_image: np.ndarray,
    dtype: torch.dtype = _DTYPE,
    device: str = _DEVICE,
    range_min: int = -1,
) -> torch.Tensor:
    """Converts image(dtype=np.uint8) to `dtype` in range [0..255].

    Args:
        input_image: A batch of images in range [0..255], BxHxWx3 layout.
    Returns:
        A torch.Tensor of layout Bx3xHxW in range [-1..1], dtype.
    """
    ndim = input_image.ndim
    indices = list(range(1, ndim))[-1:] + list(range(1, ndim))[:-1]
    image = input_image.transpose((0,) + tuple(indices)) / _UINT8_MAX_F
    if range_min == -1:
        image = 2.0 * image - 1.0
    return torch.from_numpy(image).to(dtype).to(device)


def tensor2numpy(input_tensor: torch.Tensor, range_min: int = -1) -> np.ndarray:
    """Converts tensor in [-1,1] to image(dtype=np.uint8) in range [0..255].

    Args:
        input_tensor: Input image tensor of Bx3xHxW layout, range [-1..1].
    Returns:
        A numpy image of layout BxHxWx3, range [0..255], uint8 dtype.
    """
    if range_min == -1:
        input_tensor = (input_tensor.float() + 1.0) / 2.0
    ndim = input_tensor.ndim
    output_image = input_tensor.clamp(0, 1).cpu().numpy()
    output_image = output_image.transpose((0,) + tuple(range(2, ndim)) + (1,))
    return (output_image * _UINT8_MAX_F + 0.5).astype(np.uint8)


def pad_image_batch(batch: np.ndarray, spatial_align: int = _SPATIAL_ALIGN) -> tuple[np.ndarray, list[int]]:
    """Pads a batch of images to be divisible by `spatial_align`.

    Args:
        batch: The batch of images to pad, layout BxHxWx3, in any range.
        align: The alignment to pad to.
    Returns:
        The padded batch and the crop region.
    """
    height, width = batch.shape[1:3]
    align = spatial_align
    height_to_pad = (align - height % align) if height % align != 0 else 0
    width_to_pad = (align - width % align) if width % align != 0 else 0

    crop_region = [
        height_to_pad >> 1,
        width_to_pad >> 1,
        height + (height_to_pad >> 1),
        width + (width_to_pad >> 1),
    ]
    batch = np.pad(
        batch,
        (
            (0, 0),
            (height_to_pad >> 1, height_to_pad - (height_to_pad >> 1)),
            (width_to_pad >> 1, width_to_pad - (width_to_pad >> 1)),
            (0, 0),
        ),
        mode="constant",
    )
    return batch, crop_region


def pad_video_batch(
    batch: np.ndarray,
    temporal_align: int = _TEMPORAL_ALIGN,
    spatial_align: int = _SPATIAL_ALIGN,
) -> tuple[np.ndarray, list[int]]:
    """Pads a batch of videos to be divisible by `temporal_align` or `spatial_align`.

    Zero pad spatially. Reflection pad temporally to handle causality better.
    Args:
        batch: The batch of videos to pad., layout BxFxHxWx3, in any range.
        align: The alignment to pad to.
    Returns:
        The padded batch and the crop region.
    """
    num_frames, height, width = batch.shape[-4:-1]
    align = spatial_align
    height_to_pad = (align - height % align) if height % align != 0 else 0
    width_to_pad = (align - width % align) if width % align != 0 else 0

    align = temporal_align
    frames_to_pad = (align - (num_frames - 1) % align) if (num_frames - 1) % align != 0 else 0

    crop_region = [
        frames_to_pad >> 1,
        height_to_pad >> 1,
        width_to_pad >> 1,
        num_frames + (frames_to_pad >> 1),
        height + (height_to_pad >> 1),
        width + (width_to_pad >> 1),
    ]
    batch = np.pad(
        batch,
        (
            (0, 0),
            (0, 0),
            (height_to_pad >> 1, height_to_pad - (height_to_pad >> 1)),
            (width_to_pad >> 1, width_to_pad - (width_to_pad >> 1)),
            (0, 0),
        ),
        mode="constant",
    )
    batch = np.pad(
        batch,
        (
            (0, 0),
            (frames_to_pad >> 1, frames_to_pad - (frames_to_pad >> 1)),
            (0, 0),
            (0, 0),
            (0, 0),
        ),
        mode="edge",
    )
    return batch, crop_region


def unpad_video_batch(batch: np.ndarray, crop_region: list[int]) -> np.ndarray:
    """Unpads video with `crop_region`.

    Args:
        batch: A batch of numpy videos, layout BxFxHxWxC.
        crop_region: [f1,y1,x1,f2,y2,x2] first, top, left, last, bot, right crop indices.

    Returns:
        np.ndarray: Cropped numpy video, layout BxFxHxWxC.
    """
    assert len(crop_region) == 6, "crop_region should be len of 6."
    f1, y1, x1, f2, y2, x2 = crop_region
    return batch[..., f1:f2, y1:y2, x1:x2, :]


def unpad_image_batch(batch: np.ndarray, crop_region: list[int]) -> np.ndarray:
    """Unpads image with `crop_region`.

    Args:
        batch: A batch of numpy images, layout BxHxWxC.
        crop_region: [y1,x1,y2,x2] top, left, bot, right crop indices.

    Returns:
        np.ndarray: Cropped numpy image, layout BxHxWxC.
    """
    assert len(crop_region) == 4, "crop_region should be len of 4."
    y1, x1, y2, x2 = crop_region
    return batch[..., y1:y2, x1:x2, :]