File size: 5,932 Bytes
b6af722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""A library for Causal Video Tokenizer inference."""

from typing import Any

import numpy as np
import torch
from tqdm import tqdm

from cosmos_predict1.tokenizer.inference.utils import (
    load_decoder_model,
    load_encoder_model,
    load_model,
    numpy2tensor,
    pad_video_batch,
    tensor2numpy,
    unpad_video_batch,
)


class CausalVideoTokenizer(torch.nn.Module):
    def __init__(
        self,
        checkpoint: str = None,
        checkpoint_enc: str = None,
        checkpoint_dec: str = None,
        tokenizer_config: dict[str, Any] = None,
        device: str = "cuda",
        dtype: str = "bfloat16",
    ) -> None:
        super().__init__()
        self._device = device
        self._dtype = getattr(torch, dtype)
        self._full_model = (
            load_model(checkpoint, tokenizer_config, device).to(self._dtype) if checkpoint is not None else None
        )
        self._enc_model = (
            load_encoder_model(checkpoint_enc, tokenizer_config, device).to(self._dtype)
            if checkpoint_enc is not None
            else None
        )
        self._dec_model = (
            load_decoder_model(checkpoint_dec, tokenizer_config, device).to(self._dtype)
            if checkpoint_dec is not None
            else None
        )

    @torch.no_grad()
    def autoencode(self, input_tensor: torch.Tensor) -> torch.Tensor:
        """Reconstrcuts a batch of video tensors after embedding into a latent.

        Args:
            video: The input video Bx3xTxHxW layout, range [-1..1].
        Returns:
            The reconstructed video, layout Bx3xTxHxW, range [-1..1].
        """
        if self._full_model is not None:
            output_tensor = self._full_model(input_tensor)
            output_tensor = output_tensor[0] if isinstance(output_tensor, tuple) else output_tensor
        else:
            output_latent = self.encode(input_tensor)[0]
            output_tensor = self.decode(output_latent)
        return output_tensor

    @torch.no_grad()
    def encode(self, input_tensor: torch.Tensor) -> tuple[torch.Tensor]:
        """Encodes a numpy video into a CausalVideo latent or code.

        Args:
            input_tensor: The input tensor Bx3xTxHxW layout, range [-1..1].
        Returns:
            For causal continuous video (CV) tokenizer, the tuple contains:
                - The latent embedding, Bx16x(t)x(h)x(w), where the compression
                rate is (T/t x H/h x W/w), and channel dimension of 16.
            For causal discrete video (DV) tokenizer, the tuple contains:
              1) The indices, Bx(t)x(h)x(w), from a codebook of size 64K, which
                is formed by FSQ levels of (8,8,8,5,5,5).
              2) The discrete code, Bx6x(t)x(h)x(w), where the compression rate
                is again (T/t x H/h x W/w), and channel dimension of 6.
        """
        assert input_tensor.ndim == 5, "input video should be of 5D."

        output_latent = self._enc_model(input_tensor)
        if isinstance(output_latent, torch.Tensor):
            return output_latent
        return output_latent[:-1]

    @torch.no_grad()
    def decode(self, input_latent: torch.Tensor) -> torch.Tensor:
        """Encodes a numpy video into a CausalVideo latent.

        Args:
            input_latent: The continuous latent Bx16xtxhxw for CV,
                        or the discrete indices Bxtxhxw for DV.
        Returns:
            The reconstructed tensor, layout [B,3,1+(T-1)*8,H*16,W*16] in range [-1..1].
        """
        assert input_latent.ndim >= 4, "input latent should be of 5D for continuous and 4D for discrete."
        return self._dec_model(input_latent)

    def forward(
        self,
        video: np.ndarray,
        temporal_window: int = 17,
    ) -> np.ndarray:
        """Reconstructs video using a pre-trained CausalTokenizer autoencoder.
        Given a video of arbitrary length, the forward invokes the CausalVideoTokenizer
        in a sliding manner with a `temporal_window` size.

        Args:
            video: The input video BxTxHxWx3 layout, range [0..255].
            temporal_window: The length of the temporal window to process, default=25.
        Returns:
            The reconstructed video in range [0..255], layout BxTxHxWx3.
        """
        assert video.ndim == 5, "input video should be of 5D."
        num_frames = video.shape[1]  # can be of any length.
        output_video_list = []
        for idx in tqdm(range(0, (num_frames - 1) // temporal_window + 1)):
            # Input video for the current window.
            start, end = idx * temporal_window, (idx + 1) * temporal_window
            input_video = video[:, start:end, ...]

            # Spatio-temporally pad input_video so it's evenly divisible.
            padded_input_video, crop_region = pad_video_batch(input_video)
            input_tensor = numpy2tensor(padded_input_video, dtype=self._dtype, device=self._device)
            output_tensor = self.autoencode(input_tensor)
            padded_output_video = tensor2numpy(output_tensor)
            output_video = unpad_video_batch(padded_output_video, crop_region)

            output_video_list.append(output_video)
        return np.concatenate(output_video_list, axis=1)