Spaces:
Build error
Build error
File size: 19,867 Bytes
b6af722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Quantizers for discrete image and video tokenization."""
from typing import Optional
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import reduce
from loguru import logger as logging
from cosmos_predict1.tokenizer.modules.utils import default, entropy, pack_one, rearrange, round_ste, unpack_one
_PERSISTENT = True
class ResidualFSQuantizer(nn.Module):
"""Residual Finite Scalar Quantization
Follows Algorithm 1. in https://arxiv.org/pdf/2107.03312.pdf
"""
def __init__(self, levels: list[int], num_quantizers: int, **ignore_kwargs):
super().__init__()
self.dtype = ignore_kwargs.get("dtype", torch.float32)
self.layers = nn.ModuleList([FSQuantizer(levels=levels) for _ in range(num_quantizers)])
def forward(self, x: torch.Tensor) -> torch.Tensor:
indices_stack = []
residual = x
quantized_out = 0
loss_out = 0
for i, layer in enumerate(self.layers):
quant_indices, z, loss = layer(residual)
indices_stack.append(quant_indices)
residual = residual - z.detach()
quantized_out = quantized_out + z
loss_out = loss_out + loss
self.residual = residual
indices = torch.stack(indices_stack, dim=1)
return indices, quantized_out.to(self.dtype), loss_out.to(self.dtype)
def indices_to_codes(self, indices_stack: torch.Tensor) -> torch.Tensor:
quantized_out = 0
for layer, indices in zip(self.layers, indices_stack.transpose(0, 1)):
quantized_out += layer.indices_to_codes(indices)
return quantized_out
class FSQuantizer(nn.Module):
"""Finite Scalar Quantization: VQ-VAE Made Simple - https://arxiv.org/abs/2309.15505
Code adapted from Jax version in Appendix A.1.
Adapted from: https://github.com/lucidrains/vector-quantize-pytorch/blob/9502a1f447876d53fd37685b226bf28f250dc4a3/
vector_quantize_pytorch/finite_scalar_quantization.py
[Copyright (c) 2020 Phil Wang]
https://github.com/lucidrains/vector-quantize-pytorch/blob/9502a1f447876d53fd37685b226bf28f250dc4a3/LICENSE
"""
def __init__(
self,
levels: list[int],
dim: Optional[int] = None,
num_codebooks=1,
keep_num_codebooks_dim: Optional[bool] = None,
scale: Optional[float] = None,
**ignore_kwargs,
):
super().__init__()
self.dtype = ignore_kwargs.get("dtype", torch.bfloat16)
self.persistent = ignore_kwargs.get("persistent_quantizer", _PERSISTENT)
_levels = torch.tensor(levels, dtype=torch.int32)
self.register_buffer("_levels", _levels, persistent=self.persistent)
_basis = torch.cumprod(torch.tensor([1] + levels[:-1]), dim=0, dtype=torch.int32)
self.register_buffer("_basis", _basis, persistent=self.persistent)
self.scale = scale
codebook_dim = len(levels)
self.codebook_dim = codebook_dim
effective_codebook_dim = codebook_dim * num_codebooks
self.num_codebooks = num_codebooks
self.effective_codebook_dim = effective_codebook_dim
keep_num_codebooks_dim = default(keep_num_codebooks_dim, num_codebooks > 1)
assert not (num_codebooks > 1 and not keep_num_codebooks_dim)
self.keep_num_codebooks_dim = keep_num_codebooks_dim
self.dim = default(dim, len(_levels) * num_codebooks)
has_projections = self.dim != effective_codebook_dim
self.project_in = nn.Linear(self.dim, effective_codebook_dim) if has_projections else nn.Identity()
self.project_out = nn.Linear(effective_codebook_dim, self.dim) if has_projections else nn.Identity()
self.has_projections = has_projections
self.codebook_size = self._levels.prod().item()
implicit_codebook = self.indices_to_codes(torch.arange(self.codebook_size), project_out=False)
self.register_buffer("implicit_codebook", implicit_codebook, persistent=self.persistent)
def bound(self, z: torch.Tensor, eps: float = 1e-3) -> torch.Tensor:
"""Bound `z`, an array of shape (..., d)."""
half_l = (self._levels - 1) * (1 + eps) / 2
offset = torch.where(self._levels % 2 == 0, 0.5, 0.0)
shift = (offset / half_l).atanh()
return (z + shift).tanh() * half_l - offset
def quantize(self, z: torch.Tensor) -> torch.Tensor:
"""Quantizes z, returns quantized zhat, same shape as z."""
quantized = round_ste(self.bound(z))
half_width = self._levels // 2 # Renormalize to [-1, 1].
return quantized / half_width
def _scale_and_shift(self, zhat_normalized: torch.Tensor) -> torch.Tensor:
half_width = self._levels // 2
return (zhat_normalized * half_width) + half_width
def _scale_and_shift_inverse(self, zhat: torch.Tensor) -> torch.Tensor:
half_width = self._levels // 2
return (zhat - half_width) / half_width
def codes_to_indices(self, zhat: torch.Tensor) -> torch.Tensor:
"""Converts a `code` to an index in the codebook."""
assert zhat.shape[-1] == self.codebook_dim
zhat = self._scale_and_shift(zhat).float()
return (zhat * self._basis).sum(dim=-1).to(torch.int32)
def indices_to_codes(self, indices: torch.Tensor, project_out=True) -> torch.Tensor:
"""Inverse of `codes_to_indices`."""
is_img_or_video = indices.ndim >= (3 + int(self.keep_num_codebooks_dim))
indices = rearrange(indices, "... -> ... 1")
codes_non_centered = (indices // self._basis) % self._levels
codes = self._scale_and_shift_inverse(codes_non_centered)
if self.keep_num_codebooks_dim:
codes = rearrange(codes, "... c d -> ... (c d)")
if project_out:
codes = self.project_out(codes)
if is_img_or_video:
codes = rearrange(codes, "b ... d -> b d ...")
return codes.to(self.dtype)
def forward(self, z: torch.Tensor) -> torch.Tensor:
"""
einstein notation
b - batch
n - sequence (or flattened spatial dimensions)
d - feature dimension, which is also log2(codebook size)
c - number of codebook dim
"""
is_img_or_video = z.ndim >= 4
# standardize image or video into (batch, seq, dimension)
if is_img_or_video:
z = rearrange(z, "b d ... -> b ... d")
z, ps = pack_one(z, "b * d")
assert z.shape[-1] == self.dim, f"expected dimension of {self.dim} but found dimension of {z.shape[-1]}"
z = self.project_in(z)
z = rearrange(z, "b n (c d) -> b n c d", c=self.num_codebooks)
codes = self.quantize(z)
indices = self.codes_to_indices(codes)
codes = rearrange(codes, "b n c d -> b n (c d)")
out = self.project_out(codes)
# reconstitute image or video dimensions
if is_img_or_video:
out = unpack_one(out, ps, "b * d")
out = rearrange(out, "b ... d -> b d ...")
indices = unpack_one(indices, ps, "b * c")
dummy_loss = torch.zeros_like(out.mean(dim=[1, 2, 3], keepdim=True))
else:
dummy_loss = torch.zeros_like(out.mean(dim=[1, 2], keepdim=True)).unsqueeze(1)
if not self.keep_num_codebooks_dim:
indices = rearrange(indices, "... 1 -> ...")
return (indices, out.to(self.dtype), dummy_loss)
class VectorQuantizer(nn.Module):
"""Improved version over VectorQuantizer. Mostly
avoids costly matrix multiplications and allows for post-hoc remapping of indices.
Adapted from: https://github.com/CompVis/taming-transformers/blob/3ba01b241669f5ade541ce990f7650a3b8f65318/
taming/modules/vqvae/quantize.py
[Copyright (c) 2020 Patrick Esser and Robin Rombach and Björn Ommer]
https://github.com/CompVis/taming-transformers/blob/3ba01b241669f5ade541ce990f7650a3b8f65318/License.txt
"""
def __init__(
self,
num_embeddings: int,
embedding_dim: int,
beta: float = 0.25,
remap: str = None,
unknown_index: str = "random",
sane_index_shape: bool = False,
legacy: bool = True,
use_norm=False,
**ignore_kwargs,
):
super().__init__()
self.n_e = num_embeddings
self.e_dim = embedding_dim
self.beta = beta
self.legacy = legacy
self.norm = lambda x: F.normalize(x, dim=-1) if use_norm else x
self.embedding = nn.Embedding(self.n_e, self.e_dim)
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
self.remap = remap
if self.remap is not None:
self.register_buffer("used", torch.tensor(np.load(self.remap)))
self.re_embed = self.used.shape[0]
self.unknown_index = unknown_index
if self.unknown_index == "extra":
self.unknown_index = self.re_embed
self.re_embed = self.re_embed + 1
print(
f"Remapping {self.n_e} indices to {self.re_embed} indices. "
f"Using {self.unknown_index} for unknown indices."
)
else:
self.re_embed = num_embeddings
self.sane_index_shape = sane_index_shape
self.dtype = ignore_kwargs.get("dtype", torch.float32)
def remap_to_used(self, inds):
ishape = inds.shape
assert len(ishape) > 1
inds = inds.reshape(ishape[0], -1)
used = self.used.to(inds)
match = (inds[:, :, None] == used[None, None, ...]).long()
new = match.argmax(-1)
unknown = match.sum(2) < 1
if self.unknown_index == "random":
new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device)
else:
new[unknown] = self.unknown_index
return new.reshape(ishape)
def unmap_to_all(self, inds):
ishape = inds.shape
assert len(ishape) > 1
inds = inds.reshape(ishape[0], -1)
used = self.used.to(inds)
if self.re_embed > self.used.shape[0]: # extra token
inds[inds >= self.used.shape[0]] = 0 # simply set to zero
back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds)
return back.reshape(ishape)
def forward(self, z, temp=None, rescale_logits=False, return_logits=False):
assert temp is None or temp == 1.0, "Only for interface compatible with Gumbel"
assert rescale_logits is False, "Only for interface compatible with Gumbel"
assert return_logits is False, "Only for interface compatible with Gumbel"
z = rearrange(z, "b c h w -> b h w c").contiguous()
z_flattened = z.view(-1, self.e_dim)
d = (
torch.sum(z_flattened**2, dim=1, keepdim=True)
+ torch.sum(self.embedding.weight**2, dim=1)
- 2
* torch.einsum(
"bd,dn->bn",
z_flattened,
rearrange(self.embedding.weight, "n d -> d n"),
)
)
encoding_indices = torch.argmin(d, dim=1).unsqueeze(1)
encodings = torch.zeros(encoding_indices.shape[0], self.n_e, device=z.device)
encodings.scatter_(1, encoding_indices, 1)
z_q = torch.matmul(encodings, self.embedding.weight).view(z.shape)
min_encodings = None
z_q, z = self.norm(z_q), self.norm(z)
# compute loss for embedding
commit_loss = torch.mean((z_q - z.detach()) ** 2, dim=[1, 2, 3], keepdim=True)
emb_loss = torch.mean((z_q.detach() - z) ** 2, dim=[1, 2, 3], keepdim=True)
if not self.legacy:
loss = self.beta * emb_loss + commit_loss
else:
loss = emb_loss + self.beta * commit_loss
# preserve gradients
z_q = z + (z_q - z).detach()
avg_probs = torch.mean(encodings, dim=0)
perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10)))
# reshape back to match original input shape
z_q = rearrange(z_q, "b h w c -> b c h w").contiguous()
if self.remap is not None:
min_encoding_indices = encoding_indices.squeeze(1).reshape(z.shape[0], -1) # add batch axis
min_encoding_indices = self.remap_to_used(encoding_indices.squeeze(1))
min_encoding_indices = min_encoding_indices.reshape(-1, 1) # flatten
if self.sane_index_shape:
min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3])
return (
z_q,
loss,
(
encoding_indices.squeeze(1),
min_encodings,
commit_loss.mean().detach(),
self.beta * emb_loss.mean().detach(),
perplexity.mean().detach(),
),
)
def get_codebook_entry(self, indices, shape):
# shape specifying (batch, height, width, channel)
if self.remap is not None:
indices = indices.reshape(shape[0], -1) # add batch axis
indices = self.unmap_to_all(indices)
indices = indices.reshape(-1) # flatten again
# get quantized latent vectors
z_q = self.embedding(indices)
if shape is not None:
z_q = z_q.view(shape)
# reshape back to match original input shape
z_q = z_q.permute(0, 3, 1, 2).contiguous()
return z_q
class LFQuantizer(nn.Module):
"""Lookup-Free Quantization
Adapted from: https://github.com/lucidrains/vector-quantize-pytorch/blob/9502a1f447876d53fd37685b226bf28f250dc4a3/
vector_quantize_pytorch/lookup_free_quantization.py
[Copyright (c) 2020 Phil Wang]
https://github.com/lucidrains/vector-quantize-pytorch/blob/9502a1f447876d53fd37685b226bf28f250dc4a3/LICENSE
"""
def __init__(
self,
*,
codebook_size: int,
codebook_dim: int,
embed_dim: Optional[int] = None, # if None, use codebook_dim
entropy_loss_weight=0.1,
commitment_loss_weight=0.25,
default_temp: float = 0.01,
entropy_loss: bool = False,
**ignore_kwargs,
):
"""Lookup-Free Quantization
Args:
codebook_size (int): The number of entries in the codebook.
codebook_dim (int): The number of bits in each code.
embed_dim (Optional[int], optional): The dimension of the input embedding. Defaults to None.
entropy_loss_weight (float, optional): Whether to use entropy loss. Defaults to 0.1.
commitment_loss_weight (float, optional): Weight for commitment loss. Defaults to 0.25.
default_temp (float, optional): The temprature to use. Defaults to 0.01.
entropy_loss (bool, optional): Flag for entropy loss. Defaults to False.
"""
super().__init__()
self.entropy_loss = entropy_loss
self.codebook_dim = codebook_dim
self.default_temp = default_temp
self.entrop_loss_weight = entropy_loss_weight
self.commitment_loss_weight = commitment_loss_weight
embed_dim = embed_dim or codebook_dim
has_projections = embed_dim != codebook_dim
self.project_in = nn.Linear(embed_dim, codebook_dim) if has_projections else nn.Identity()
self.project_out = nn.Linear(codebook_dim, embed_dim) if has_projections else nn.Identity()
logging.info(f"LFQ: has_projections={has_projections}, dim_in={embed_dim}, codebook_dim={codebook_dim}")
self.dtype = ignore_kwargs.get("dtype", torch.float32)
if entropy_loss:
assert 2**codebook_dim == codebook_size, "codebook size must be 2 ** codebook_dim"
self.codebook_size = codebook_size
self.register_buffer(
"mask",
2 ** torch.arange(codebook_dim - 1, -1, -1),
persistent=_PERSISTENT,
)
self.register_buffer("zero", torch.tensor(0.0), persistent=_PERSISTENT)
all_codes = torch.arange(codebook_size)
bits = ((all_codes[..., None].int() & self.mask) != 0).float()
codebook = 2 * bits - 1.0
self.register_buffer("codebook", codebook, persistent=_PERSISTENT) # [codebook_size, codebook_dim]
def forward(self, z: torch.Tensor, temp: float = None) -> torch.Tensor:
temp = temp or self.default_temp
z = rearrange(z, "b d ... -> b ... d")
z, ps = pack_one(z, "b * d")
z = self.project_in(z)
# split out number of codebooks
z = rearrange(z, "b n (c d) -> b n c d", c=self.num_codebooks)
# quantization
original_input = z
codebook_value = torch.ones_like(z)
z_q = torch.where(z > 0, codebook_value, -codebook_value)
# preserve gradients
z_q = z + (z_q - z).detach()
# commit loss
commit_loss = ((original_input - z_q.detach()) ** 2).mean(dim=[1, 2, 3])
z_q = rearrange(z_q, "b n c d -> b n (c d)")
z_q = self.project_out(z_q)
# reshape
z_q = unpack_one(z_q, ps, "b * d")
z_q = rearrange(z_q, "b ... d -> b d ...")
loss = self.commitment_loss_weight * commit_loss
# entropy loss (eq-5)
if self.entropy_loss:
# indices
indices = reduce((z > 0).int() * self.mask.int(), "b n c d -> b n c", "sum")
indices = unpack_one(indices, ps, "b * c")
indices = rearrange(indices, "... 1 -> ...")
distance = -2 * torch.einsum(
"... i d, j d -> ... i j",
original_input,
self.codebook.to(original_input.dtype),
)
prob = (-distance / temp).softmax(dim=-1)
per_sample_entropy = entropy(prob).mean(dim=[1, 2])
avg_prob = reduce(prob, "... c d -> c d", "mean")
codebook_entropy = entropy(avg_prob).mean()
entropy_aux_loss = per_sample_entropy - codebook_entropy
loss += self.entrop_loss_weight * entropy_aux_loss
return (
z_q,
loss.unsqueeze(1).unsqueeze(1).unsqueeze(1),
(
indices,
self.commitment_loss_weight * commit_loss.mean().detach(),
self.entrop_loss_weight * entropy_aux_loss.mean().detach(),
self.entrop_loss_weight * per_sample_entropy.mean().detach(),
self.entrop_loss_weight * codebook_entropy.mean().detach(),
),
)
else:
return (
z_q,
loss.unsqueeze(1).unsqueeze(1).unsqueeze(1),
self.commitment_loss_weight * commit_loss.mean().detach(),
)
class InvQuantizerJit(nn.Module):
"""Use for decoder_jit to trace quantizer in discrete tokenizer"""
def __init__(self, quantizer):
super().__init__()
self.quantizer = quantizer
def forward(self, indices: torch.Tensor):
codes = self.quantizer.indices_to_codes(indices)
return codes.to(self.quantizer.dtype)
|