Spaces:
Build error
Build error
File size: 7,306 Bytes
b6af722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Copied from jam_data.
"""
import inspect
from typing import Any, Callable, Dict
import torch
from torch.utils.data import Dataset
MAX_LENGTH = 1 << 15
class LambdaDataset(torch.utils.data.Dataset):
"""
A dataset that generates items by applying a function. This allows for creating
dynamic datasets where the items are the result of function calls. The function can optionally
accept an index argument.
Attributes:
length (int): The total number of items in the dataset.
fn (Callable): The function to generate dataset items.
is_index_in_params (bool): Flag to determine whether 'index' should be passed
to the function `fn`.
"""
def __init__(self, fn: Callable, length: int = MAX_LENGTH) -> None:
"""
Initializes the LambdaDataset with a function and the total length.
Args:
fn (Callable): A function that returns a dataset item. It can optionally accept an
index argument to generate data items based on their index.
length (int): The total number of items in the dataset, defaults to MAX_LENGTH.
"""
self.length = length
self.fn = fn
try:
# Attempt to inspect the function signature to determine if it accepts an 'index' parameter.
signature = inspect.signature(fn)
self.is_index_in_params = "index" in signature.parameters
except ValueError:
# If the function signature is not inspectable, assume 'index' is not a parameter.
self.is_index_in_params = False
def __len__(self) -> int:
"""
Returns the total length of the dataset.
Returns:
int: The number of items in the dataset.
"""
return self.length
def __getitem__(self, index: int) -> Any:
"""
Retrieves an item at a specific index from the dataset by calling the function `fn`.
Passes the index to `fn` if `fn` is designed to accept an index.
Args:
index (int): The index of the item to retrieve.
Returns:
Any: The item returned by the function `fn`.
"""
if self.is_index_in_params:
return self.fn(index) # Call fn with index if it accepts an index parameter.
return self.fn() # Call fn without any parameters if it does not accept the index.
class RepeatDataset(torch.utils.data.Dataset):
"""
A dataset wrapper that allows repeating access to items from an underlying dataset.
This dataset can be used to create an artificial extension of the underlying dataset
to a specified `length`. Each item from the original dataset can be accessed
repeatedly up to `num_item` times before it loops back.
Attributes:
length (int): The total length of the dataset to be exposed.
dataset (Dataset): The original dataset.
num_item (int): Number of times each item is repeated.
cache_item (dict): Cache to store accessed items to avoid recomputation.
"""
def __init__(self, dataset: Dataset, length: int = MAX_LENGTH, num_item: int = 1) -> None:
"""
Initializes the RepeatDataset with a dataset, length, and number of repeats per item.
Args:
dataset (Dataset): The dataset to repeat.
length (int): The total length of the dataset to be exposed. Defaults to MAX_LENGTH.
num_item (int): The number of times to repeat each item. Defaults to 1.
"""
self.length = length
self.dataset = dataset
self.num_item = num_item
self.cache_item = {}
def __len__(self) -> int:
return self.length
def __getitem__(self, index: int) -> Any:
index = index % self.num_item
if index not in self.cache_item:
self.cache_item[index] = self.dataset[index]
return self.cache_item[index]
class CombinedDictDataset(torch.utils.data.Dataset):
"""
A dataset that wraps multiple PyTorch datasets and returns a dictionary of data items from each dataset for a given index.
This dataset ensures that all constituent datasets have the same length by setting the length to the minimum length of the datasets provided.
Parameters:
-----------
**datasets : Dict[str, Dataset]
A dictionary where keys are string identifiers for the datasets and values are the datasets instances themselves.
Attributes:
-----------
datasets : Dict[str, Dataset]
Stores the input datasets.
max_length : int
The minimum length among all provided datasets, determining the length of this combined dataset.
Examples:
---------
>>> dataset1 = torch.utils.data.TensorDataset(torch.randn(100, 3, 32, 32))
>>> dataset2 = torch.utils.data.TensorDataset(torch.randn(100, 3, 32, 32))
>>> combined_dataset = CombinedDictDataset(dataset1=dataset1, dataset2=dataset2)
>>> print(len(combined_dataset))
100
>>> data = combined_dataset[50]
>>> print(data.keys())
dict_keys(['dataset1', 'dataset2'])
"""
def __init__(self, **datasets: Dict[str, Dataset]) -> None:
"""
Initializes the CombinedDictDataset with multiple datasets.
Args:
**datasets (Dict[str, Dataset]): Key-value pairs where keys are dataset names and values
are dataset instances. Each key-value pair adds a dataset
under the specified key.
"""
self.datasets = datasets
self.max_length = min([len(dataset) for dataset in datasets.values()])
def __len__(self) -> int:
return self.max_length
def __getitem__(self, index: int) -> Dict[str, Any]:
"""
Retrieves an item from each dataset at the specified index, combines them into a dictionary,
and returns the dictionary. Each key in the dictionary corresponds to one of the dataset names provided
during initialization, and its value is the item from that dataset at the given index.
Args:
index (int): The index of the items to retrieve across all datasets.
Returns:
Dict[str, Any]: A dictionary containing data items from all datasets for the given index.
Each key corresponds to a dataset name, and its value is the data item from that dataset.
"""
data = {}
for key, dataset in self.datasets.items():
data[key] = dataset[index]
return data
|