File size: 6,562 Bytes
b6af722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Utilities for datasets creation."""

IMAGE_KEY = "images"
VIDEO_KEY = "video"
RECON_KEY = "reconstructions"
LATENT_KEY = "latent"
INPUT_KEY = "INPUT"
MASK_KEY = "loss_mask"

_SPATIAL_ALIGN = 16


import math
from typing import Union

import torch
from PIL import Image

# This is your "for short_side=720" map:
_ASPECT_SIZE_DICT = {
    "1,1": (720, 720),
    "4,3": (960, 720),
    "3,4": (720, 960),
    "16,9": (1280, 720),
    "9,16": (720, 1280),
}


VIDEO_RES_SIZE_INFO: dict[str, tuple[int, int]] = {
    "1080": {  # 1080p doesn't have 1:1
        "4,3": (1440, 1072),
        "3,4": (1072, 1440),
        "16,9": (1920, 1072),
        "9,16": (1072, 1920),
    },
    "720": {"1,1": (720, 720), "4,3": (960, 720), "3,4": (720, 960), "16,9": (1280, 720), "9,16": (720, 1280)},
    "480": {"1,1": (480, 480), "4,3": (640, 480), "3,4": (480, 640), "16,9": (854, 480), "9,16": (480, 854)},
    "512": {"1,1": (512, 512), "4,3": (672, 512), "3,4": (512, 672), "16,9": (896, 512), "9,16": (512, 896)},
    "360": {"1,1": (320, 320), "4,3": (416, 320), "3,4": (320, 416), "16,9": (544, 320), "9,16": (320, 544)},
    "256": {"1,1": (256, 256), "4,3": (320, 256), "3,4": (256, 320), "16,9": (320, 192), "9,16": (192, 320)},
    "128": {  # Note that we set res lower than 256 to the same resolution as 256
        "1,1": (256, 256),
        "4,3": (320, 256),
        "3,4": (256, 320),
        "16,9": (448, 256),
        "9,16": (256, 448),
    },
}

VIDEO_VAL_CROP_SIZE_INFO: dict[str, tuple[int, int]] = {
    "1080": {  # 1080p doesn't have 1:1
        "4,3": (1424, 1072),
        "3,4": (1072, 1424),
        "16,9": (1904, 1072),
        "9,16": (1072, 1904),
        "16,10": (1715, 1072),
    },
    "720": {"1,1": (704, 704), "4,3": (944, 704), "3,4": (704, 944), "16,9": (1264, 704), "9,16": (704, 1264)},
    "480": {"1,1": (464, 464), "4,3": (624, 464), "3,4": (464, 624), "16,9": (848, 464), "9,16": (464, 848)},
    "360": {"1,1": (320, 320), "4,3": (416, 320), "3,4": (320, 416), "16,9": (544, 320), "9,16": (320, 544)},
    "512": {"1,1": (512, 512), "4,3": (672, 512), "3,4": (512, 672), "16,9": (896, 512), "9,16": (512, 896)},
    "256": {"1,1": (256, 256), "4,3": (320, 256), "3,4": (256, 320), "16,9": (320, 192), "9,16": (192, 320)},
    "128": {  # Note that we set res lower than 256 to the same resolution as 256
        "1,1": (256, 256),
        "4,3": (320, 256),
        "3,4": (256, 320),
        "16,9": (320, 192),
        "9,16": (192, 320),
        "16,10": (410, 256),
    },
}


def _pick_closest_aspect_ratio(height, width):
    """
    Given a video's height and width, return the closest aspect ratio key
    from aspect_dict.
    """
    if height == 0:
        return "1,1"  # fallback if something weird, to avoid div by zero

    actual_ratio = width / height

    best_key = None
    min_diff = math.inf

    for ratio_key, (w_target, h_target) in _ASPECT_SIZE_DICT.items():
        # for "16,9" -> (1280, 720), ratio is 1280/720 = 1.7777...
        ratio = w_target / h_target
        diff = abs(actual_ratio - ratio)
        if diff < min_diff:
            min_diff = diff
            best_key = ratio_key

    return best_key


def categorize_aspect_and_store(data_sample):
    """
    data_sample: a dict with 'video' shaped [C,T,H,W].
    We will determine the aspect ratio, pick the closest "1,1", "4,3", etc.,
    and store a new dict entry.
    """
    # Suppose 'video' is [C, T, H, W].
    video_tensor = data_sample["video"]
    H = video_tensor.shape[-2]
    W = video_tensor.shape[-1]
    data_sample["aspect_ratio"] = _pick_closest_aspect_ratio(H, W)
    return data_sample


def get_crop_size_info(crop_sz: int = 128):
    aspect_ratios = [(1, 1), (4, 3), (3, 4), (16, 9), (9, 16)]
    crop_sizes = dict()
    for aspect_ratio in aspect_ratios:
        if aspect_ratio[0] < aspect_ratio[1]:
            crop_h = crop_sz // _SPATIAL_ALIGN * _SPATIAL_ALIGN
            crop_w = int(crop_h * aspect_ratio[0] / aspect_ratio[1] + 0.5)
            crop_w = crop_w // _SPATIAL_ALIGN * _SPATIAL_ALIGN
        else:
            crop_w = crop_sz // _SPATIAL_ALIGN * _SPATIAL_ALIGN
            crop_h = int(crop_w * aspect_ratio[1] / aspect_ratio[0] + 0.5)
            crop_h = crop_h // _SPATIAL_ALIGN * _SPATIAL_ALIGN
        key = f"{aspect_ratio[0]},{aspect_ratio[1]}"
        crop_sizes.update({key: (crop_w, crop_h)})
    return crop_sizes


def obtain_image_size(data_dict: dict, input_keys: list) -> tuple[int, int]:
    r"""Function for obtaining the image size from the data dict.

    Args:
        data_dict (dict): Input data dict
        input_keys (list): List of input keys
    Returns:
        width (int): Width of the input image
        height (int): Height of the input image
    """

    data1 = data_dict[input_keys[0]]
    if isinstance(data1, Image.Image):
        width, height = data1.size
    elif isinstance(data1, torch.Tensor):
        height, width = data1.size()[-2:]
    else:
        raise ValueError("data to random crop should be PIL Image or tensor")

    return width, height


def obtain_augmentation_size(data_dict: dict, augmentor_cfg: dict) -> Union[int, tuple]:
    r"""Function for obtaining size of the augmentation.
    When dealing with multi-aspect ratio dataloaders, we need to
    find the augmentation size from the aspect ratio of the data.

    Args:
        data_dict (dict): Input data dict
        augmentor_cfg (dict): Augmentor config
    Returns:
        aug_size (int): Size of augmentation
    """
    if "__url__" in data_dict and "aspect_ratio" in data_dict["__url__"].meta.opts:
        aspect_ratio = data_dict["__url__"].meta.opts["aspect_ratio"]
        aug_size = augmentor_cfg["size"][aspect_ratio]
    else:  # Non-webdataset format
        aspect_ratio = data_dict["aspect_ratio"]
        aug_size = augmentor_cfg["size"][aspect_ratio]
    return aug_size