File size: 6,557 Bytes
b6af722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Run this command to interactively debug:
PYTHONPATH=. python cosmos_predict1/tokenizer/training/datasets/video_dataset.py

Adapted from:
https://github.com/bytedance/IRASim/blob/main/dataset/dataset_3D.py
"""

import traceback
import warnings
from concurrent.futures import ThreadPoolExecutor, as_completed
from glob import glob

import numpy as np
import torch
from decord import VideoReader, cpu
from torch.utils.data import Dataset
from torchvision import transforms as T
from tqdm import tqdm

from cosmos_predict1.diffusion.training.datasets.dataset_utils import ToTensorVideo


class Dataset(Dataset):
    def __init__(
        self,
        video_pattern,
        sequence_interval=1,
        start_frame_interval=1,
        num_video_frames=25,
    ):
        """Dataset class for loading image-text-to-video generation data.

        Args:
            video_pattern (str): path/to/videos/*.mp4
            sequence_interval (int): Interval between sampled frames in a sequence
            num_frames (int): Number of frames to load per sequence
            video_size (list): Target size [H,W] for video frames

        Returns dict with:
            - video: RGB frames tensor [T,C,H,W]
            - video_name: Dict with episode/frame metadata
        """

        super().__init__()
        self.video_directory_or_pattern = video_pattern
        self.start_frame_interval = start_frame_interval
        self.sequence_interval = sequence_interval
        self.sequence_length = num_video_frames

        self.video_paths = sorted(glob(str(video_pattern)))
        print(f"{len(self.video_paths)} videos in total")

        self.samples = self._init_samples(self.video_paths)
        self.samples = sorted(self.samples, key=lambda x: (x["video_path"], x["frame_ids"][0]))
        print(f"{len(self.samples)} samples in total")
        self.wrong_number = 0
        self.preprocess = T.Compose(
            [
                ToTensorVideo(),
            ]
        )

    def __str__(self):
        return f"{len(self.video_paths)} samples from {self.video_directory_or_pattern}"

    def _init_samples(self, video_paths):
        samples = []
        with ThreadPoolExecutor(32) as executor:
            future_to_video_path = {
                executor.submit(self._load_and_process_video_path, video_path): video_path for video_path in video_paths
            }
            for future in tqdm(as_completed(future_to_video_path), total=len(video_paths)):
                samples.extend(future.result())
        return samples

    def _load_and_process_video_path(self, video_path):
        vr = VideoReader(video_path, ctx=cpu(0), num_threads=2)
        n_frames = len(vr)

        samples = []
        for frame_i in range(0, n_frames, self.start_frame_interval):
            sample = dict()
            sample["video_path"] = video_path
            sample["frame_ids"] = []
            curr_frame_i = frame_i
            while True:
                if curr_frame_i > (n_frames - 1):
                    break
                sample["frame_ids"].append(curr_frame_i)
                if len(sample["frame_ids"]) == self.sequence_length:
                    break
                curr_frame_i += self.sequence_interval
            # make sure there are sequence_length number of frames
            if len(sample["frame_ids"]) == self.sequence_length:
                samples.append(sample)
        return samples

    def __len__(self):
        return len(self.samples)

    def _load_video(self, video_path, frame_ids):
        vr = VideoReader(video_path, ctx=cpu(0), num_threads=2)
        assert (np.array(frame_ids) < len(vr)).all()
        assert (np.array(frame_ids) >= 0).all()
        vr.seek(0)
        frame_data = vr.get_batch(frame_ids).asnumpy()
        return frame_data

    def _get_frames(self, video_path, frame_ids):
        frames = self._load_video(video_path, frame_ids)
        frames = frames.astype(np.uint8)
        frames = torch.from_numpy(frames).permute(0, 3, 1, 2)  # (l, c, h, data)
        frames = self.preprocess(frames)
        frames = torch.clamp(frames * 255.0, 0, 255).to(torch.uint8)
        return frames

    def __getitem__(self, index):
        try:
            sample = self.samples[index]
            video_path = sample["video_path"]
            frame_ids = sample["frame_ids"]

            data = dict()

            video = self._get_frames(video_path, frame_ids)
            video = video.permute(1, 0, 2, 3)  # Rearrange from [T, C, H, W] to [C, T, H, W]
            data["video"] = video
            data["video_name"] = {
                "video_path": video_path,
                "start_frame_id": str(frame_ids[0]),
            }
            data["fps"] = 24
            data["image_size"] = torch.tensor([704, 1280, 704, 1280])  # .cuda()  # TODO: Does this matter?
            data["num_frames"] = self.sequence_length
            data["padding_mask"] = torch.zeros(1, 704, 1280)  # .cuda()

            return data
        except Exception:
            warnings.warn(
                f"Invalid data encountered: {self.samples[index]['video_path']}. Skipped "
                f"(by randomly sampling another sample in the same dataset)."
            )
            warnings.warn("FULL TRACEBACK:")
            warnings.warn(traceback.format_exc())
            self.wrong_number += 1
            print(self.wrong_number)
            return self[np.random.randint(len(self.samples))]


if __name__ == "__main__":
    dataset = Dataset(
        video_directory_or_pattern="assets/example_training_data/videos/*.mp4",
        sequence_interval=1,
        num_frames=57,
        video_size=[240, 360],
    )

    indices = [0, 13, 200, -1]
    for idx in indices:
        data = dataset[idx]
        print((f"{idx=} " f"{data['video'].sum()=}\n" f"{data['video'].shape=}\n" f"{data['video_name']=}\n" "---"))