File size: 6,395 Bytes
b6af722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""A CLI to export an pre-trained tokenizer checkpoint into a torch.ScriptModule.

Usage:
python3 -m cosmos_predict1.tokenizer.training.jit_cli \
    --ckpt_path=checkpoints/Cosmos-0.1-Tokenizer-CV4x8x8/iter_001000000.pt \
    --output_dir=checkpoints/Cosmos-0.1-Tokenizer-CV4x8x8/exported \
    --strict_resume \
    --config=cosmos_predict1/tokenizer/training/configs/config.py -- \
        experiment=CV720_Causal_AE49_4x8x8_cosmos


    will output:
        <output-dir>/iter_001000000_ema.jit
        <output-dir>/iter_001000000_enc.jit
        <output-dir>/iter_001000000_dec.jit

    if --reg is specified, it will export the regular model:
        <output-dir>/iter_001000000_reg.jit
        <output-dir>/iter_001000000_enc.jit
        <output-dir>/iter_001000000_dec.jit
"""

import argparse
import importlib
import os

import torch
from loguru import logger as logging
from torch._dynamo.eval_frame import OptimizedModule as torch_OptimizedModule

from cosmos_predict1.tokenizer.training.checkpointer import TokenizerCheckpointer
from cosmos_predict1.utils import callback, ema
from cosmos_predict1.utils.config import Config
from cosmos_predict1.utils.config_helper import get_config_module, override
from cosmos_predict1.utils.lazy_config import instantiate
from cosmos_predict1.utils.model import Model

parser = argparse.ArgumentParser(description="Export a pre-trained model into a torch.jit.ScriptModule.")
parser.add_argument(
    "--config", type=str, default="cosmos_predict1/tokenizer/training/configs/config.py", help="Path to the config file"
)
parser.add_argument("--ckpt_path", type=str, default=None, help="The full ckpt path.")
parser.add_argument("--credentials", type=str, default="credentials/pdx_vfm_base.secret", help="The credentials file.")
parser.add_argument("--strict_resume", action="store_true", help="Enable strictly loading into every network weight.")
parser.add_argument("--reg", action="store_true", help="Enable regular model export.")
parser.add_argument("--output_dir", type=str, default=None, help="Optional output directory.")

parser.add_argument(
    "opts",
    help="""
Modify config options at the end of the command. For Yacs configs, use
space-separated "PATH.KEY VALUE" pairs.
For python-based LazyConfig, use "path.key=value".
    """.strip(),
    default=None,
    nargs=argparse.REMAINDER,
)

logging.info("Initialize args, cfg from command line arguments ...")
args = parser.parse_args()
config_module = get_config_module(args.config)
config: Config = importlib.import_module(config_module).make_config()
config = override(config, args.opts)


def _compile_jit_models(model: Model) -> dict[str, torch.ScriptModule]:
    """Returns a TorchScript version of REG or EMA models compiled by PyTorch JIT."""
    assert hasattr(config, "checkpoint") and hasattr(config.checkpoint, "jit")
    config_jit = config.checkpoint.jit
    input_shape = tuple(config_jit.input_shape)
    example_input = torch.randn(input_shape)
    dtype = getattr(torch, config_jit.dtype)
    example_input = example_input.to(config_jit.device).to(dtype)

    # Make sure jit model output consistenly during consecutive calls
    # Check here: https://github.com/pytorch/pytorch/issues/74534
    torch._C._jit_set_texpr_fuser_enabled(False)

    with ema.ema_scope(model, enabled=model.config.ema.enabled and not args.reg):
        _model = model.network.eval()
        if isinstance(_model, torch_OptimizedModule):
            _model = _model._orig_mod
        model_jit = torch.jit.trace(_model, example_input, strict=config_jit.strict)
        encoder_jit = torch.jit.trace(_model.encoder_jit(), example_input, strict=config_jit.strict)
        decoder_example = encoder_jit(example_input)[0]
        decoder_jit = torch.jit.trace(_model.decoder_jit(), decoder_example, strict=config_jit.strict)
    if args.reg:
        return {"reg": model_jit, "enc": encoder_jit, "dec": decoder_jit}
    return {"ema": model_jit, "enc": encoder_jit, "dec": decoder_jit}


def _run_export() -> None:
    """Exports a torch.nn.Module into a torch.jit.ScriptModule."""
    # Check that the config is valid.
    config.validate()
    config.checkpoint.load_path = args.ckpt_path
    config.checkpoint.strict_resume = args.strict_resume
    config.checkpoint.load_training_state = False
    config.job.name = os.path.basename(args.output_dir) if args.output_dir else os.path.basename(args.ckpt_path)

    # Freeze the config.
    config.freeze()  # type: ignore
    callbacks = callback.CallBackGroup(config=config, trainer=None)
    checkpointer = TokenizerCheckpointer(config.checkpoint, config.job, callbacks=callbacks)

    # Create the model.
    logging.info(f"Instantiate model={config.model.config.network.name} ...")
    model = instantiate(config.model)
    model = model.to("cuda", memory_format=config.trainer.memory_format)  # type: ignore
    model.on_train_start(config.trainer.memory_format)

    logging.info(f"loading weights from {config.checkpoint.load_path}...")
    _ = checkpointer.load(model)
    model.eval()
    ckpt_name = config.checkpoint.load_path.split("/")[-1][:-3]

    # Drive the output directory.
    tmp_output_dir = os.path.dirname(config.checkpoint.load_path)
    output_dir = args.output_dir or tmp_output_dir
    os.makedirs(output_dir, exist_ok=True)

    logging.info("Performing JIT compilation ...")
    jit_models = _compile_jit_models(model)
    for name, jit_model in jit_models.items():
        logging.info(f"Outputing torch.jit: {output_dir}/{ckpt_name}_{name}.jit")
        torch.jit.save(jit_model, f"{output_dir}/{ckpt_name}_{name}.jit")


@logging.catch(reraise=True)
def main() -> None:
    _run_export()


if __name__ == "__main__":
    main()