Spaces:
Build error
Build error
File size: 6,395 Bytes
b6af722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A CLI to export an pre-trained tokenizer checkpoint into a torch.ScriptModule.
Usage:
python3 -m cosmos_predict1.tokenizer.training.jit_cli \
--ckpt_path=checkpoints/Cosmos-0.1-Tokenizer-CV4x8x8/iter_001000000.pt \
--output_dir=checkpoints/Cosmos-0.1-Tokenizer-CV4x8x8/exported \
--strict_resume \
--config=cosmos_predict1/tokenizer/training/configs/config.py -- \
experiment=CV720_Causal_AE49_4x8x8_cosmos
will output:
<output-dir>/iter_001000000_ema.jit
<output-dir>/iter_001000000_enc.jit
<output-dir>/iter_001000000_dec.jit
if --reg is specified, it will export the regular model:
<output-dir>/iter_001000000_reg.jit
<output-dir>/iter_001000000_enc.jit
<output-dir>/iter_001000000_dec.jit
"""
import argparse
import importlib
import os
import torch
from loguru import logger as logging
from torch._dynamo.eval_frame import OptimizedModule as torch_OptimizedModule
from cosmos_predict1.tokenizer.training.checkpointer import TokenizerCheckpointer
from cosmos_predict1.utils import callback, ema
from cosmos_predict1.utils.config import Config
from cosmos_predict1.utils.config_helper import get_config_module, override
from cosmos_predict1.utils.lazy_config import instantiate
from cosmos_predict1.utils.model import Model
parser = argparse.ArgumentParser(description="Export a pre-trained model into a torch.jit.ScriptModule.")
parser.add_argument(
"--config", type=str, default="cosmos_predict1/tokenizer/training/configs/config.py", help="Path to the config file"
)
parser.add_argument("--ckpt_path", type=str, default=None, help="The full ckpt path.")
parser.add_argument("--credentials", type=str, default="credentials/pdx_vfm_base.secret", help="The credentials file.")
parser.add_argument("--strict_resume", action="store_true", help="Enable strictly loading into every network weight.")
parser.add_argument("--reg", action="store_true", help="Enable regular model export.")
parser.add_argument("--output_dir", type=str, default=None, help="Optional output directory.")
parser.add_argument(
"opts",
help="""
Modify config options at the end of the command. For Yacs configs, use
space-separated "PATH.KEY VALUE" pairs.
For python-based LazyConfig, use "path.key=value".
""".strip(),
default=None,
nargs=argparse.REMAINDER,
)
logging.info("Initialize args, cfg from command line arguments ...")
args = parser.parse_args()
config_module = get_config_module(args.config)
config: Config = importlib.import_module(config_module).make_config()
config = override(config, args.opts)
def _compile_jit_models(model: Model) -> dict[str, torch.ScriptModule]:
"""Returns a TorchScript version of REG or EMA models compiled by PyTorch JIT."""
assert hasattr(config, "checkpoint") and hasattr(config.checkpoint, "jit")
config_jit = config.checkpoint.jit
input_shape = tuple(config_jit.input_shape)
example_input = torch.randn(input_shape)
dtype = getattr(torch, config_jit.dtype)
example_input = example_input.to(config_jit.device).to(dtype)
# Make sure jit model output consistenly during consecutive calls
# Check here: https://github.com/pytorch/pytorch/issues/74534
torch._C._jit_set_texpr_fuser_enabled(False)
with ema.ema_scope(model, enabled=model.config.ema.enabled and not args.reg):
_model = model.network.eval()
if isinstance(_model, torch_OptimizedModule):
_model = _model._orig_mod
model_jit = torch.jit.trace(_model, example_input, strict=config_jit.strict)
encoder_jit = torch.jit.trace(_model.encoder_jit(), example_input, strict=config_jit.strict)
decoder_example = encoder_jit(example_input)[0]
decoder_jit = torch.jit.trace(_model.decoder_jit(), decoder_example, strict=config_jit.strict)
if args.reg:
return {"reg": model_jit, "enc": encoder_jit, "dec": decoder_jit}
return {"ema": model_jit, "enc": encoder_jit, "dec": decoder_jit}
def _run_export() -> None:
"""Exports a torch.nn.Module into a torch.jit.ScriptModule."""
# Check that the config is valid.
config.validate()
config.checkpoint.load_path = args.ckpt_path
config.checkpoint.strict_resume = args.strict_resume
config.checkpoint.load_training_state = False
config.job.name = os.path.basename(args.output_dir) if args.output_dir else os.path.basename(args.ckpt_path)
# Freeze the config.
config.freeze() # type: ignore
callbacks = callback.CallBackGroup(config=config, trainer=None)
checkpointer = TokenizerCheckpointer(config.checkpoint, config.job, callbacks=callbacks)
# Create the model.
logging.info(f"Instantiate model={config.model.config.network.name} ...")
model = instantiate(config.model)
model = model.to("cuda", memory_format=config.trainer.memory_format) # type: ignore
model.on_train_start(config.trainer.memory_format)
logging.info(f"loading weights from {config.checkpoint.load_path}...")
_ = checkpointer.load(model)
model.eval()
ckpt_name = config.checkpoint.load_path.split("/")[-1][:-3]
# Drive the output directory.
tmp_output_dir = os.path.dirname(config.checkpoint.load_path)
output_dir = args.output_dir or tmp_output_dir
os.makedirs(output_dir, exist_ok=True)
logging.info("Performing JIT compilation ...")
jit_models = _compile_jit_models(model)
for name, jit_model in jit_models.items():
logging.info(f"Outputing torch.jit: {output_dir}/{ckpt_name}_{name}.jit")
torch.jit.save(jit_model, f"{output_dir}/{ckpt_name}_{name}.jit")
@logging.catch(reraise=True)
def main() -> None:
_run_export()
if __name__ == "__main__":
main()
|