File size: 5,730 Bytes
b6af722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""The combined loss functions for continuous-space tokenizers training."""

import numpy as np
import torch
import torch.nn as nn
from skimage.metrics import structural_similarity as ssim

from cosmos_predict1.tokenizer.modules.utils import time2batch
from cosmos_predict1.utils.lazy_config import instantiate

_VALID_METRIC_NAMES = ["PSNR", "SSIM", "CodeUsage"]
_UINT8_MAX_F = float(torch.iinfo(torch.uint8).max)
_FLOAT32_EPS = torch.finfo(torch.float32).eps
_RECONSTRUCTION = "reconstructions"
_QUANT_INFO = "quant_info"


class TokenizerMetric(nn.Module):
    def __init__(self, config) -> None:
        super().__init__()
        self.config = config
        self.metric_modules = nn.ModuleDict()
        for key in _VALID_METRIC_NAMES:
            self.metric_modules[key] = instantiate(getattr(config, key)) if hasattr(config, key) else NULLMetric()

    def forward(
        self, inputs: dict[str, torch.Tensor], output_batch: dict[str, torch.Tensor], iteration: int
    ) -> dict[str, torch.Tensor]:
        metric = dict()
        for _, module in self.metric_modules.items():
            metric.update(module(inputs, output_batch, iteration))
        return dict(metric=metric)


class NULLMetric(torch.nn.Module):
    def __init__(self) -> None:
        super().__init__()

    def forward(
        self, inputs: dict[str, torch.Tensor], output_batch: dict[str, torch.Tensor], iteration: int
    ) -> dict[str, torch.Tensor]:
        return dict()


class PSNRMetric(torch.nn.Module):
    def __init__(self) -> None:
        super().__init__()

    def forward(
        self, inputs: dict[str, torch.Tensor], output_batch: dict[str, torch.Tensor], iteration: int
    ) -> dict[str, torch.Tensor]:
        reconstructions = output_batch[_RECONSTRUCTION]
        if inputs.ndim == 5:
            inputs, _ = time2batch(inputs)
            reconstructions, _ = time2batch(reconstructions)

        # Normalize to uint8 [0..255] range.
        true_image = (inputs.to(torch.float32) + 1) / 2
        pred_image = (reconstructions.to(torch.float32) + 1) / 2
        true_image = (true_image * _UINT8_MAX_F + 0.5).to(torch.uint8)
        pred_image = (pred_image * _UINT8_MAX_F + 0.5).to(torch.uint8)

        # Calculate PNSR, based on Mean Squared Error (MSE)
        true_image = true_image.to(torch.float32)
        pred_image = pred_image.to(torch.float32)
        mse = torch.mean((true_image - pred_image) ** 2, dim=(1, 2, 3))
        psnr = 10 * torch.log10(_UINT8_MAX_F**2 / (mse + _FLOAT32_EPS))
        return dict(PSNR=torch.mean(psnr))


class SSIMMetric(torch.nn.Module):
    def __init__(self) -> None:
        super().__init__()

    def forward(
        self, inputs: dict[str, torch.Tensor], output_batch: dict[str, torch.Tensor], iteration: int
    ) -> dict[str, torch.Tensor]:
        reconstructions = output_batch[_RECONSTRUCTION]
        if inputs.ndim == 5:
            inputs, _ = time2batch(inputs)
            reconstructions, _ = time2batch(reconstructions)

        # Normalize to uint8 [0..255] range.
        true_image = (inputs.to(torch.float32) + 1) / 2
        pred_image = (reconstructions.to(torch.float32) + 1) / 2
        true_image = (true_image * _UINT8_MAX_F + 0.5).to(torch.uint8)
        pred_image = (pred_image * _UINT8_MAX_F + 0.5).to(torch.uint8)

        # Move tensors to CPU and convert to numpy arrays
        true_image_np = true_image.permute(0, 2, 3, 1).cpu().numpy()
        pred_image_np = pred_image.permute(0, 2, 3, 1).cpu().numpy()

        # Calculate SSIM for each image in the batch and average over the batch
        ssim_values = []
        for true_image_i, pred_image_i in zip(true_image_np, pred_image_np):
            ssim_value = ssim(true_image_i, pred_image_i, data_range=_UINT8_MAX_F, multichannel=True, channel_axis=-1)
            ssim_values.append(ssim_value)
        ssim_mean = np.mean(ssim_values)
        return dict(SSIM=torch.tensor(ssim_mean, dtype=torch.float32, device=inputs.device))


class CodeUsageMetric(torch.nn.Module):
    """
    Calculate the perplexity of codebook usage (only for discrete tokenizers)

    :param codebook_indices: Tensor of codebook indices (quant_info)
    :param codebook_size: The total number of codebook entries
    :return: Perplexity of the codebook usage
    """

    def __init__(self, codebook_size: int) -> None:
        super().__init__()
        self.codebook_size = codebook_size

    def forward(
        self, inputs: dict[str, torch.Tensor], output_batch: dict[str, torch.Tensor], iteration: int
    ) -> dict[str, torch.Tensor]:
        code_indices = output_batch[_QUANT_INFO]
        usage_counts = torch.bincount(code_indices.flatten().int(), minlength=self.codebook_size)
        total_usage = usage_counts.sum().float()
        usage_probs = usage_counts.float() / total_usage
        entropy = -torch.sum(usage_probs * torch.log(usage_probs + _FLOAT32_EPS))
        perplexity = torch.exp(entropy)
        return dict(CodeUsage=torch.tensor(perplexity, dtype=torch.float32, device=code_indices.device))