Spaces:
Build error
Build error
File size: 8,524 Bytes
b6af722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Implements the forward op for training, validation, and inference."""
from typing import Any
import torch
from cosmos_predict1.tokenizer.training.datasets.utils import IMAGE_KEY, INPUT_KEY, MASK_KEY, RECON_KEY, VIDEO_KEY
from cosmos_predict1.tokenizer.training.losses.continuous import RECON_CONSISTENCY_KEY, VIDEO_CONSISTENCY_LOSS
from cosmos_predict1.utils import ema
from cosmos_predict1.utils.lazy_config import LazyDict, instantiate
from cosmos_predict1.utils.model import Model
PREDICTION = "prediction"
EMA_PREDICTION = "ema_prediction"
class TokenizerModel(Model):
def __init__(self, config) -> None:
super().__init__()
self.config = config
self.network = instantiate(config.network)
self.loss = instantiate(config.loss)
self.metric = instantiate(config.metric)
self.precision = getattr(torch, config.precision)
if self.config.ema.enabled:
self.ema = ema.EMAModelTracker(
self,
beta=self.config.ema.beta,
torch_compile_buffer_renaming=self.config.ema.torch_compile_buffer_renaming,
)
self.init_input_keys()
def init_input_keys(self):
self.image_key = IMAGE_KEY
self.video_key = VIDEO_KEY
def get_input_key(self, data_batch: dict[str, torch.Tensor]) -> str:
if self.image_key in data_batch:
return self.image_key
elif self.video_key in data_batch:
return self.video_key
else:
raise ValueError("Input key not found in data_batch.")
def init_optimizer_scheduler(
self, optimizer_config: LazyDict, scheduler_config: LazyDict
) -> tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LRScheduler]:
"""Creates the optimizer and scheduler for the network.
Args:
optimizer_config: The optimizer config for the net.
scheduler_config: The scheduler config for the net.
Returns:
optimizer (torch.optim.Optimizer): The net optimizer.
scheduler (torch.optim.lr_scheduler.LRScheduler): The net optimization scheduler.
"""
optimizer_config.params = self.network.parameters()
optimizer = instantiate(optimizer_config)
scheduler_config.optimizer = optimizer
scheduler = instantiate(scheduler_config)
return optimizer, scheduler
def on_train_start(self, memory_format: torch.memory_format = torch.preserve_format) -> None:
if self.config.ema.enabled:
self.ema.to(dtype=torch.float32)
self.network = self.network.to(dtype=self.precision, memory_format=memory_format)
self.loss = self.loss.to(dtype=self.precision, memory_format=memory_format)
def state_dict(
self, destination: dict[str, Any] = None, prefix: str = "", keep_vars: bool = False
) -> dict[str, Any]:
original_state_dict = super(TokenizerModel, self).state_dict(destination, prefix, keep_vars)
# Filter out '.loss' and 'ema.loss-' keys from the state dict.
filtered_state_dict = {k: v for k, v in original_state_dict.items() if not k.startswith("loss.")}
filtered_state_dict = {k: v for k, v in filtered_state_dict.items() if not k.startswith("ema.loss-")}
filtered_state_dict = {
k: v for k, v in filtered_state_dict.items() if not k.startswith("network.encoder.patcher")
}
filtered_state_dict = {
k: v for k, v in filtered_state_dict.items() if not k.startswith("network.decoder.unpatcher")
}
return filtered_state_dict
def load_state_dict(self, state_dict: Any, strict: bool = True) -> None:
own_state = self.state_dict()
filtered_state_dict = {k: v for k, v in state_dict.items() if k in own_state}
# Load only filtered state dict.
super(TokenizerModel, self).load_state_dict(filtered_state_dict, strict=False)
# If strict is True, ensure all parameters are loaded (except the excluded ones)
missing_keys = set(own_state.keys()) - set(filtered_state_dict.keys())
if missing_keys and strict:
raise KeyError(f"Missing keys in state_dict: {missing_keys}")
def _on_before_network_forward(self, data_batch: dict[str, torch.Tensor]) -> None:
consistency_loss = self.loss.loss_modules[VIDEO_CONSISTENCY_LOSS]
if hasattr(consistency_loss, "enabled") and consistency_loss.enabled:
_input_key = self.get_input_key(data_batch)
if _input_key is self.video_key:
data_batch[_input_key] = consistency_loss.shuffle(data_batch[_input_key])
return
def _on_after_network_forward(
self, data_batch: dict[str, torch.Tensor], output_batch: dict[str, torch.Tensor]
) -> None:
consistency_loss = self.loss.loss_modules[VIDEO_CONSISTENCY_LOSS]
if hasattr(consistency_loss, "enabled") and consistency_loss.enabled:
_input_key = self.get_input_key(data_batch)
if _input_key is self.video_key:
data_batch[_input_key] = consistency_loss.unshuffle(data_batch[_input_key])
output_batch[RECON_CONSISTENCY_KEY] = torch.ones_like(output_batch[RECON_KEY]) * output_batch[RECON_KEY]
output_batch[RECON_KEY] = consistency_loss.unshuffle(output_batch[RECON_KEY])
return
def _network_forward(self, data_batch: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]:
# A callback proxy to modify the input before the forward pass.
self._on_before_network_forward(data_batch)
# Do the forward pass.
tensor_batch = data_batch[self.get_input_key(data_batch)]
output_batch = self.network(tensor_batch)
output_batch = output_batch if self.network.training else output_batch._asdict()
# A callback proxy to modify the output after the forward pass.
self._on_after_network_forward(data_batch, output_batch)
return output_batch
def training_step(
self,
data_batch: dict[str, torch.Tensor],
iteration: int,
) -> tuple[dict[str, torch.Tensor], torch.Tensor]:
_input_key = self.get_input_key(data_batch)
output_dict = self._network_forward(data_batch)
input_images, recon_images = data_batch[_input_key], output_dict[RECON_KEY]
# pass loss_mask to loss computation
inputs = {INPUT_KEY: input_images, MASK_KEY: data_batch.get("loss_mask", torch.ones_like(input_images))}
loss_dict, loss_value = self.loss(inputs, output_dict, iteration)
return dict({PREDICTION: recon_images, **loss_dict}), loss_value
@torch.no_grad()
def validation_step(
self,
data_batch: dict[str, torch.Tensor],
iteration: int,
ema_model: bool = False,
) -> tuple[dict[str, torch.Tensor], torch.Tensor]:
_input_key = self.get_input_key(data_batch)
output_dict = self._network_forward(data_batch)
input_images, recon_images = data_batch[_input_key], output_dict[RECON_KEY]
# pass loss_mask to loss computation
inputs = {INPUT_KEY: input_images, MASK_KEY: data_batch.get("loss_mask", torch.ones_like(input_images))}
loss_dict, loss_value = self.loss(inputs, output_dict, iteration)
metric_dict = self.metric(input_images, output_dict, iteration)
loss_dict.update(metric_dict)
prediction_key = EMA_PREDICTION if ema_model else PREDICTION
return dict({prediction_key: recon_images, **loss_dict}), loss_value
@torch.inference_mode()
def forward(self, data_batch: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]:
_input_key = self.get_input_key(data_batch)
output_dict = self._network_forward(data_batch)
return dict({PREDICTION: output_dict[RECON_KEY]})
|