File size: 8,524 Bytes
b6af722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Implements the forward op for training, validation, and inference."""

from typing import Any

import torch

from cosmos_predict1.tokenizer.training.datasets.utils import IMAGE_KEY, INPUT_KEY, MASK_KEY, RECON_KEY, VIDEO_KEY
from cosmos_predict1.tokenizer.training.losses.continuous import RECON_CONSISTENCY_KEY, VIDEO_CONSISTENCY_LOSS
from cosmos_predict1.utils import ema
from cosmos_predict1.utils.lazy_config import LazyDict, instantiate
from cosmos_predict1.utils.model import Model

PREDICTION = "prediction"
EMA_PREDICTION = "ema_prediction"


class TokenizerModel(Model):
    def __init__(self, config) -> None:
        super().__init__()
        self.config = config
        self.network = instantiate(config.network)
        self.loss = instantiate(config.loss)
        self.metric = instantiate(config.metric)
        self.precision = getattr(torch, config.precision)
        if self.config.ema.enabled:
            self.ema = ema.EMAModelTracker(
                self,
                beta=self.config.ema.beta,
                torch_compile_buffer_renaming=self.config.ema.torch_compile_buffer_renaming,
            )
        self.init_input_keys()

    def init_input_keys(self):
        self.image_key = IMAGE_KEY
        self.video_key = VIDEO_KEY

    def get_input_key(self, data_batch: dict[str, torch.Tensor]) -> str:
        if self.image_key in data_batch:
            return self.image_key
        elif self.video_key in data_batch:
            return self.video_key
        else:
            raise ValueError("Input key not found in data_batch.")

    def init_optimizer_scheduler(
        self, optimizer_config: LazyDict, scheduler_config: LazyDict
    ) -> tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LRScheduler]:
        """Creates the optimizer and scheduler for the network.

        Args:
            optimizer_config: The optimizer config for the net.
            scheduler_config: The scheduler config for the net.

        Returns:
            optimizer (torch.optim.Optimizer): The net optimizer.
            scheduler (torch.optim.lr_scheduler.LRScheduler): The net optimization scheduler.
        """
        optimizer_config.params = self.network.parameters()
        optimizer = instantiate(optimizer_config)
        scheduler_config.optimizer = optimizer
        scheduler = instantiate(scheduler_config)

        return optimizer, scheduler

    def on_train_start(self, memory_format: torch.memory_format = torch.preserve_format) -> None:
        if self.config.ema.enabled:
            self.ema.to(dtype=torch.float32)
        self.network = self.network.to(dtype=self.precision, memory_format=memory_format)
        self.loss = self.loss.to(dtype=self.precision, memory_format=memory_format)

    def state_dict(
        self, destination: dict[str, Any] = None, prefix: str = "", keep_vars: bool = False
    ) -> dict[str, Any]:
        original_state_dict = super(TokenizerModel, self).state_dict(destination, prefix, keep_vars)

        # Filter out '.loss' and 'ema.loss-' keys from the state dict.
        filtered_state_dict = {k: v for k, v in original_state_dict.items() if not k.startswith("loss.")}
        filtered_state_dict = {k: v for k, v in filtered_state_dict.items() if not k.startswith("ema.loss-")}
        filtered_state_dict = {
            k: v for k, v in filtered_state_dict.items() if not k.startswith("network.encoder.patcher")
        }
        filtered_state_dict = {
            k: v for k, v in filtered_state_dict.items() if not k.startswith("network.decoder.unpatcher")
        }

        return filtered_state_dict

    def load_state_dict(self, state_dict: Any, strict: bool = True) -> None:
        own_state = self.state_dict()
        filtered_state_dict = {k: v for k, v in state_dict.items() if k in own_state}

        # Load only filtered state dict.
        super(TokenizerModel, self).load_state_dict(filtered_state_dict, strict=False)

        # If strict is True, ensure all parameters are loaded (except the excluded ones)
        missing_keys = set(own_state.keys()) - set(filtered_state_dict.keys())
        if missing_keys and strict:
            raise KeyError(f"Missing keys in state_dict: {missing_keys}")

    def _on_before_network_forward(self, data_batch: dict[str, torch.Tensor]) -> None:
        consistency_loss = self.loss.loss_modules[VIDEO_CONSISTENCY_LOSS]
        if hasattr(consistency_loss, "enabled") and consistency_loss.enabled:
            _input_key = self.get_input_key(data_batch)
            if _input_key is self.video_key:
                data_batch[_input_key] = consistency_loss.shuffle(data_batch[_input_key])
        return

    def _on_after_network_forward(
        self, data_batch: dict[str, torch.Tensor], output_batch: dict[str, torch.Tensor]
    ) -> None:
        consistency_loss = self.loss.loss_modules[VIDEO_CONSISTENCY_LOSS]
        if hasattr(consistency_loss, "enabled") and consistency_loss.enabled:
            _input_key = self.get_input_key(data_batch)
            if _input_key is self.video_key:
                data_batch[_input_key] = consistency_loss.unshuffle(data_batch[_input_key])
                output_batch[RECON_CONSISTENCY_KEY] = torch.ones_like(output_batch[RECON_KEY]) * output_batch[RECON_KEY]
                output_batch[RECON_KEY] = consistency_loss.unshuffle(output_batch[RECON_KEY])
        return

    def _network_forward(self, data_batch: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]:
        # A callback proxy to modify the input before the forward pass.
        self._on_before_network_forward(data_batch)

        # Do the forward pass.
        tensor_batch = data_batch[self.get_input_key(data_batch)]
        output_batch = self.network(tensor_batch)
        output_batch = output_batch if self.network.training else output_batch._asdict()

        # A callback proxy to modify the output after the forward pass.
        self._on_after_network_forward(data_batch, output_batch)
        return output_batch

    def training_step(
        self,
        data_batch: dict[str, torch.Tensor],
        iteration: int,
    ) -> tuple[dict[str, torch.Tensor], torch.Tensor]:
        _input_key = self.get_input_key(data_batch)
        output_dict = self._network_forward(data_batch)
        input_images, recon_images = data_batch[_input_key], output_dict[RECON_KEY]

        # pass loss_mask to loss computation
        inputs = {INPUT_KEY: input_images, MASK_KEY: data_batch.get("loss_mask", torch.ones_like(input_images))}

        loss_dict, loss_value = self.loss(inputs, output_dict, iteration)
        return dict({PREDICTION: recon_images, **loss_dict}), loss_value

    @torch.no_grad()
    def validation_step(
        self,
        data_batch: dict[str, torch.Tensor],
        iteration: int,
        ema_model: bool = False,
    ) -> tuple[dict[str, torch.Tensor], torch.Tensor]:
        _input_key = self.get_input_key(data_batch)
        output_dict = self._network_forward(data_batch)
        input_images, recon_images = data_batch[_input_key], output_dict[RECON_KEY]

        # pass loss_mask to loss computation
        inputs = {INPUT_KEY: input_images, MASK_KEY: data_batch.get("loss_mask", torch.ones_like(input_images))}

        loss_dict, loss_value = self.loss(inputs, output_dict, iteration)
        metric_dict = self.metric(input_images, output_dict, iteration)
        loss_dict.update(metric_dict)
        prediction_key = EMA_PREDICTION if ema_model else PREDICTION
        return dict({prediction_key: recon_images, **loss_dict}), loss_value

    @torch.inference_mode()
    def forward(self, data_batch: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]:
        _input_key = self.get_input_key(data_batch)
        output_dict = self._network_forward(data_batch)
        return dict({PREDICTION: output_dict[RECON_KEY]})