File size: 10,751 Bytes
b6af722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import annotations

import os
import threading
from typing import TYPE_CHECKING

import torch

from cosmos_predict1.utils import callback, distributed, log, misc
from cosmos_predict1.utils.model import Model

if TYPE_CHECKING:
    from cosmos_predict1.utils.config import CheckpointConfig, JobConfig


class Checkpointer:
    """The checkpointer class. Supports checkpoint saving/loading to local disk."""

    def __init__(self, config_checkpoint: CheckpointConfig, config_job: JobConfig, callbacks: callback.CallBackGroup):
        """Constructor of the checkpointer.

        Args:
            config_checkpoint (CheckpointConfig): The config object for the checkpointer.
        """
        # Set the callback functions.
        self.callbacks = callbacks
        self.checkpoint_dir_local = f"{config_job.path_local}/checkpoints"
        self.strict_resume = config_checkpoint.strict_resume
        self.load_path = config_checkpoint.load_path or None
        self.load_training_state = config_checkpoint.load_training_state
        self.only_load_scheduler_state = config_checkpoint.only_load_scheduler_state
        self.save_thread = None

    def save(
        self,
        model: Model,
        optimizer: torch.optim.Optimizer,
        scheduler: torch.optim.lr_scheduler.LRScheduler,
        grad_scaler: torch.amp.GradScaler,
        iteration: int,
    ) -> None:
        """Save network weights, optimizer parameters, scheduler parameters to a checkpoint.

        Args:
            model (Model): The PyTorch model.
            optimizer (torch.optim.Optimizer): The model optimizer.
            scheduler (torch.optim.lr_scheduler.LRScheduler): The optimization scheduler.
            grad_scaler (torch.amp.GradScaler): The gradient scaler (for mixed precision training).
            iteration (int): Current iteration number.
        """
        self.callbacks.on_save_checkpoint_start(model, iteration)

        checkpoint_file = f"iter_{iteration:09}.pt"

        if distributed.get_rank() == 0:
            state_dict = dict(
                model=model.state_dict(),
                optimizer=optimizer.state_dict(),
                scheduler=scheduler.state_dict(),
                grad_scaler=grad_scaler.state_dict(),
                iteration=iteration,
            )
            state_dict = misc.to(state_dict, device="cpu")
            self.callbacks.on_save_checkpoint(model, state_dict=state_dict)
            # Wait for previous saver thread to end.
            if self.save_thread:
                self.save_thread.join()
            # Run the checkpoint saver in a separate thread.
            self.save_thread = threading.Thread(
                target=self._save_worker_local,
                daemon=False,
                args=(state_dict, checkpoint_file, distributed.get_rank()),
            )
            self.save_thread.start()

        # Note: Checkpoints are saved on a separate thread and this callback is not accurate.
        # Please check logs from on_save_checkpoint_success() for better accuracy
        self.callbacks.on_save_checkpoint_end(model=None, iteration=iteration)

    @misc.timer("checkpoint saving (local)")
    def _save_worker_local(self, state_dict: dict[str, torch.Tensor], checkpoint_file: str, rank: int = 0) -> None:
        """Worker to save checkpoint to local disk, spawned with a child thread (runs in parallel with the training).

        Args:
            state_dict (dict[str, torch.Tensor]): The state dict of the model/optimizer/scheduler.
            checkpoint_file (str): The file name of the model checkpoint.
            rank (int): GPU device (default: 0).
        """
        checkpoint_path = os.path.join(self.checkpoint_dir_local, checkpoint_file)
        os.makedirs(self.checkpoint_dir_local, exist_ok=True)
        try:
            torch.save(state_dict, checkpoint_path)
            if rank == 0:
                self._write_latest_checkpoint_file(checkpoint_file)
            log.success(f"Saved checkpoint (local): {checkpoint_path}")
            iteration = int(checkpoint_file.replace("iter_", "").replace(".pt", ""))
            self.callbacks.on_save_checkpoint_success(iteration=iteration)
        except Exception as e:  # noqa: BLE001
            log.exception(f"Checkpoint failed to save (local): {e}")

    @misc.timer("checkpoint loading")
    def load(
        self,
        model: Model,
        optimizer: torch.optim.Optimizer | None = None,
        scheduler: torch.optim.lr_scheduler.LRScheduler | None = None,
        grad_scaler: torch.amp.GradScaler | None = None,
    ) -> int:
        """Load network weights and optimizer states from a checkpoint in a single process.

        The priority of the checkpoint loading logic is:
        1. Attempt to resume training if possible by looking for latest_checkpoint.txt under the same name.
        2. If no latest checkpoint were found, it loads the model weights specified by config_checkpoint.path.
           - This is typically used for inference mode.
           - If config_checkpoint.load_optimizer_state is True, then also load the optimizer and scheduler states.
        3. If none of the above, randomly initialize the model parameters and train from scratch.

        Args:
            model (Model): The PyTorch model.
            optimizer (torch.optim.Optimizer | None): The model optimizer (default: None).
            scheduler (torch.optim.lr_scheduler.LRScheduler | None): The optimization scheduler (default: None).
            grad_scaler (torch.amp.GradScaler | None): The gradient scaler (for mixed precision training).

        Returns:
            iteration (int): the iteration number to start/resume from.
        """
        self.callbacks.on_load_checkpoint_start(model)

        latest_checkpoint_file = self._read_latest_checkpoint_file()
        if latest_checkpoint_file is not None:
            # 1. Resume training from latest_checkpoint.txt under the same name.
            checkpoint_dir = self.checkpoint_dir_local
            checkpoint_path = os.path.join(checkpoint_dir, latest_checkpoint_file)
            resume = True
            only_resume_scheduler = True
        else:
            if self.load_path:
                # 2. Load the module weights specified by config_checkpoint.path.
                checkpoint_path = self.load_path
                resume = self.load_training_state
                only_resume_scheduler = self.only_load_scheduler_state
            else:
                # 3. Randomly initialize the model parameters and train from scratch.
                checkpoint_path = None
                resume = False
                only_resume_scheduler = False
        # Load checkpoint.
        if checkpoint_path is not None:
            self._check_checkpoint_exists(checkpoint_path)
            log.info(f"Loading checkpoint (local): {checkpoint_path}")
            state_dict = torch.load(checkpoint_path, map_location=lambda storage, loc: storage, weights_only=False)
            log.success(f"Complete loading checkpoint (local): {checkpoint_path}")
            self.callbacks.on_load_checkpoint(model, state_dict=state_dict)
            # Load the state dicts.
            log.info("- Loading the model...")
            if "model" in state_dict:
                model.load_state_dict(state_dict["model"], strict=self.strict_resume)
            else:
                model.load_state_dict(state_dict, strict=self.strict_resume)
            if resume or only_resume_scheduler:
                iteration = state_dict["iteration"]
                assert scheduler
                log.info("- Loading the scheduler...")
                scheduler.load_state_dict(state_dict["scheduler"])
                scheduler.last_epoch = iteration
            else:
                iteration = 0
            if resume:
                assert optimizer
                log.info("- Loading the optimizer...")
                optimizer.load_state_dict(state_dict["optimizer"])
                log.info("- Loading the gradient scaler...")
                grad_scaler.load_state_dict(state_dict["grad_scaler"])
                log.success(f"Done with loading the checkpoint (iteration {iteration}).")
            else:
                log.success("Done with loading the checkpoint.")
        else:
            # Checkpoint not found and not specified. We will train everything from scratch.
            iteration = 0
            log.info("Training from scratch.")
        torch.cuda.empty_cache()

        self.callbacks.on_load_checkpoint_end(model)

        return iteration

    def _read_latest_checkpoint_file(self) -> str | None:
        """Get the file name of the latest saved checkpoint. If it doesn't exist, return None.

        Returns:
            checkpoint_file (str | None): file name of the latest saved checkpoint.
        """
        checkpoint_file = None
        latest_path = os.path.join(self.checkpoint_dir_local, "latest_checkpoint.txt")
        if os.path.isfile(latest_path):
            checkpoint_file = open(latest_path).read().strip()
        return checkpoint_file

    def _write_latest_checkpoint_file(self, checkpoint_file: str) -> None:
        """Track the file name of the latest saved checkpoint.

        Args:
            checkpoint_file (str): file name of the latest saved checkpoint.
        """
        content = f"{checkpoint_file}\n"
        latest_path = os.path.join(self.checkpoint_dir_local, "latest_checkpoint.txt")
        with open(latest_path, "w") as file:
            file.write(content)

    def _check_checkpoint_exists(self, checkpoint_path: str) -> None:
        """If the file checkpoint_path does not exist, raise an error.

        Args:
            checkpoint_path (str): full path to the checkpoint.
        """
        if not os.path.exists(checkpoint_path):
            raise FileNotFoundError(f"File not found (local): {checkpoint_path}")

    def finalize(self) -> None:
        """Finalize the checkpointer."""
        if self.save_thread:
            self.save_thread.join()