Spaces:
Build error
Build error
File size: 11,669 Bytes
b6af722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import os
from typing import Any, Dict, Optional, Type, TypeVar, Union
import attrs
import torch
from megatron.core import ModelParallelConfig
from cosmos_predict1.utils import callback
from cosmos_predict1.utils.lazy_config import LazyCall as L
from cosmos_predict1.utils.lazy_config import LazyDict
from cosmos_predict1.utils.misc import Color
T = TypeVar("T")
def _is_attrs_instance(obj: object) -> bool:
"""
Helper function to check if an object is an instance of an attrs-defined class.
Args:
obj: The object to check.
Returns:
bool: True if the object is an instance of an attrs-defined class, False otherwise.
"""
return hasattr(obj, "__attrs_attrs__")
def make_freezable(cls: T) -> T:
"""
A decorator that adds the capability to freeze instances of an attrs-defined class.
NOTE: This requires the wrapped attrs to be defined with attrs.define(slots=False) because we need
to hack on a "_is_frozen" attribute.
This decorator enhances an attrs-defined class with the ability to be "frozen" at runtime.
Once an instance is frozen, its attributes cannot be changed. It also recursively freezes
any attrs-defined objects that are attributes of the class.
Usage:
@make_freezable
@attrs.define(slots=False)
class MyClass:
attribute1: int
attribute2: str
obj = MyClass(1, 'a')
obj.freeze() # Freeze the instance
obj.attribute1 = 2 # Raises AttributeError
Args:
cls: The class to be decorated.
Returns:
The decorated class with added freezing capability.
"""
if not hasattr(cls, "__dict__"):
raise TypeError(
"make_freezable cannot be used with classes that do not define __dict__. Make sure that the wrapped "
"class was defined with `@attrs.define(slots=False)`"
)
original_setattr = cls.__setattr__
def setattr_override(self, key, value) -> None: # noqa: ANN001
"""
Override __setattr__ to allow modifications during initialization
and prevent modifications once the instance is frozen.
"""
if hasattr(self, "_is_frozen") and self._is_frozen and key != "_is_frozen":
raise AttributeError("Cannot modify frozen instance")
original_setattr(self, key, value) # type: ignore
cls.__setattr__ = setattr_override # type: ignore
def freeze(self: object) -> None:
"""
Freeze the instance and all its attrs-defined attributes.
"""
for _, value in attrs.asdict(self, recurse=False).items():
if _is_attrs_instance(value) and hasattr(value, "freeze"):
value.freeze()
self._is_frozen = True # type: ignore
cls.freeze = freeze # type: ignore
return cls
def _pretty_print_attrs_instance(obj: object, indent: int = 0, use_color: bool = False) -> str:
"""
Recursively pretty prints attrs objects with color.
"""
assert attrs.has(obj.__class__)
lines: list[str] = []
for attribute in attrs.fields(obj.__class__):
value = getattr(obj, attribute.name)
if attrs.has(value.__class__):
if use_color:
lines.append(" " * indent + Color.cyan("* ") + Color.green(attribute.name) + ":")
else:
lines.append(" " * indent + "* " + attribute.name + ":")
lines.append(_pretty_print_attrs_instance(value, indent + 1, use_color))
else:
if use_color:
lines.append(
" " * indent + Color.cyan("* ") + Color.green(attribute.name) + ": " + Color.yellow(value)
)
else:
lines.append(" " * indent + "* " + attribute.name + ": " + str(value))
return "\n".join(lines)
def pretty_print_overrides(overrides: Optional[list[str]] = None, use_color: bool = False) -> str:
"""
Pretty prints overrides.
"""
lines: list[str] = []
lines.append(Color.cyan("* ") + Color.green("overrides") + ": ")
for override in overrides:
if override == "--":
continue
attribute_name, attribute_value = override.split("=")
if use_color:
lines.append(" " + Color.cyan("* ") + Color.green(attribute_name) + ": " + Color.yellow(attribute_value))
else:
lines.append(" " + "* " + attribute_name + ": " + str(attribute_value))
return "\n".join(lines)
@make_freezable
@attrs.define(slots=False)
class JobConfig:
# Project name.
project: str = ""
# Experiment name.
group: str = ""
# Run/job name.
name: str = ""
@property
def path(self) -> str:
return f"{self.project}/{self.group}/{self.name}"
@property
def path_local(self) -> str:
local_root = os.environ.get("OUTPUT_ROOT", "checkpoints")
return f"{local_root}/{self.path}"
@make_freezable
@attrs.define(slots=False)
class EMAConfig:
# Enable tracking a set of exponential moving average (EMA) weights.
enabled: bool = False
# EMA decay rate.
beta: float = 0.9999
# Enable removing "_orig_mod-" from buffer names that is added by torch.compile
torch_compile_buffer_renaming: bool = False
@make_freezable
@attrs.define(slots=False)
class DDPConfig:
# Traverse the computation graph to find parameters that don't receive gradients.
find_unused_parameters: bool = False
# Set to True if the computation graph does not change during the whole training loop.
static_graph: bool = True
# Set to True if we want to synchronize buffers. Set to False if the sync is going to be handled elsewhere.
broadcast_buffers: bool = True
@make_freezable
@attrs.define(slots=False)
class CuDNNConfig:
# Set to True for better reproducibility of the results (only using deterministic cudnn functions).
deterministic: bool = False
# If set to True, cudnn will benchmark several algorithms and pick the fastest one.
benchmark: bool = True
@make_freezable
@attrs.define(slots=False)
class JITConfig:
# Enable exporting a JIT compiled model.
enabled: bool = False
# Input tensor shape, for example input.
input_shape: Union[list[int], None] = None
# Device to compile onto.
device: str = "cuda"
# # Data type to compile onto.
dtype: str = "bfloat16"
# Strict mode for PyTorch JIT.
strict: bool = True
@make_freezable
@attrs.define(slots=False)
class CheckpointConfig:
# possible checkpoint class
type: Optional[Dict] = None
# for dcp, whether to use async mode
dcp_async_mode_enabled: bool = False
# Save the checkpoint every N iterations.
save_iter: int = 999999999
# Path of model weights to resume the checkpoint from.
load_path: str = ""
# Whether to load the training states (optimizer/scheduler/grad-scaler) from the checkpoint path.
load_training_state: bool = False
# Whether to load the scheduler state only from the checkpoint path. If load_training_state is True, this will be ignored.
only_load_scheduler_state: bool = False
# Load state_dict to the models in strict mode.
strict_resume: bool = True
# Print detailed information during checkpoint saving/loading.
verbose: bool = True
# Configs for JIT compiling EMA model.
jit: JITConfig = attrs.field(factory=JITConfig)
# keys not to resume from the checkpoint, choices: ["model", "optim", "scheduler", "trainer"]
keys_not_to_resume: list[str] = []
# Whether to use the local filesystem for broadcasting checkpoint data (used for Tensor Parallel Checkpointer).
broadcast_via_filesystem: bool = False
load_ema_to_reg: bool = False
async_saving: bool = True
@make_freezable
@attrs.define(slots=False)
class TrainerConfig:
from cosmos_predict1.utils.trainer import Trainer
type: Type[Trainer] = Trainer
# Set the callback class.
# Defaults to the callbacks below.
callbacks: LazyDict = LazyDict(
dict(
ema=L(callback.EMAModelCallback)(),
progress_bar=L(callback.ProgressBarCallback)(),
)
)
# distributed parallelism strategy
distributed_parallelism: str = "ddp"
# Distributed data parallel configs.
ddp: DDPConfig = attrs.field(factory=DDPConfig)
# cuDNN configs.
cudnn: CuDNNConfig = attrs.field(factory=CuDNNConfig)
# Set the random seed.
seed: int = 0
# Gradient scaler arguments (for torch.amp.GradScaler).
grad_scaler_args: dict = attrs.field(factory=lambda: dict(enabled=False))
# Maximum number of iterations to train the model.
max_iter: int = 999999999
# Maximum number of iterations to validate the model. If None, validate on the entire dataset.
max_val_iter: int | None = None
# How often we log the training stats.
logging_iter: int = 100
# Whether we want to run the validation routines.
run_validation: bool = True
# How often we evaluate on the validation set.
validation_iter: int = 999999999
# Kill the process after N seconds since the last iteration (usually means dead job).
timeout_period: int = 999999999
# Tensor memory organization format.
memory_format: torch.memory_format = torch.preserve_format
# Gradient accumulation (update step every N iteration).
grad_accum_iter: int = 1
# # Profiling config
# profiling: Profiling = attrs.field(factory=Profiling)
@make_freezable
@attrs.define(slots=False)
class Config:
"""Config for a job.
See /README.md/Configuration System for more info.
"""
# Model configs.
model: LazyDict
# Optimizer configs.
optimizer: LazyDict = LazyDict(dict(dummy=None))
# Scheduler configs.
scheduler: LazyDict = LazyDict(dict(dummy=None))
# Training data configs.
dataloader_train: LazyDict = LazyDict(dict(dummy=None))
# Validation data configs.
dataloader_val: LazyDict = LazyDict(dict(dummy=None))
# Training job configs.
job: JobConfig = attrs.field(factory=JobConfig)
# Trainer configs.
trainer: TrainerConfig = attrs.field(factory=TrainerConfig)
# Megatron-Core configs
model_parallel: ModelParallelConfig = attrs.field(factory=ModelParallelConfig)
# Checkpointer configs.
checkpoint: CheckpointConfig = attrs.field(factory=CheckpointConfig)
def pretty_print(self, use_color: bool = False) -> str:
return _pretty_print_attrs_instance(self, 0, use_color)
# Training job configs.
job: JobConfig = attrs.field(factory=JobConfig)
def to_dict(self) -> dict[str, Any]:
return attrs.asdict(self)
def validate(self) -> None:
"""Validate that the config has all required fields."""
assert self.job.project != "", "Project name is required."
assert self.job.group != "", "Group name is required."
assert self.job.name != "", "Job name is required."
|