File size: 11,669 Bytes
b6af722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import annotations

import os
from typing import Any, Dict, Optional, Type, TypeVar, Union

import attrs
import torch
from megatron.core import ModelParallelConfig

from cosmos_predict1.utils import callback
from cosmos_predict1.utils.lazy_config import LazyCall as L
from cosmos_predict1.utils.lazy_config import LazyDict
from cosmos_predict1.utils.misc import Color

T = TypeVar("T")


def _is_attrs_instance(obj: object) -> bool:
    """
    Helper function to check if an object is an instance of an attrs-defined class.

    Args:
        obj: The object to check.

    Returns:
        bool: True if the object is an instance of an attrs-defined class, False otherwise.
    """
    return hasattr(obj, "__attrs_attrs__")


def make_freezable(cls: T) -> T:
    """
    A decorator that adds the capability to freeze instances of an attrs-defined class.

    NOTE: This requires the wrapped attrs to be defined with attrs.define(slots=False) because we need
    to hack on a "_is_frozen" attribute.

    This decorator enhances an attrs-defined class with the ability to be "frozen" at runtime.
    Once an instance is frozen, its attributes cannot be changed. It also recursively freezes
    any attrs-defined objects that are attributes of the class.

    Usage:
        @make_freezable
        @attrs.define(slots=False)
        class MyClass:
            attribute1: int
            attribute2: str

        obj = MyClass(1, 'a')
        obj.freeze()  # Freeze the instance
        obj.attribute1 = 2  # Raises AttributeError

    Args:
        cls: The class to be decorated.

    Returns:
        The decorated class with added freezing capability.
    """

    if not hasattr(cls, "__dict__"):
        raise TypeError(
            "make_freezable cannot be used with classes that do not define __dict__. Make sure that the wrapped "
            "class was defined with `@attrs.define(slots=False)`"
        )

    original_setattr = cls.__setattr__

    def setattr_override(self, key, value) -> None:  # noqa: ANN001
        """
        Override __setattr__ to allow modifications during initialization
        and prevent modifications once the instance is frozen.
        """
        if hasattr(self, "_is_frozen") and self._is_frozen and key != "_is_frozen":
            raise AttributeError("Cannot modify frozen instance")
        original_setattr(self, key, value)  # type: ignore

    cls.__setattr__ = setattr_override  # type: ignore

    def freeze(self: object) -> None:
        """
        Freeze the instance and all its attrs-defined attributes.
        """
        for _, value in attrs.asdict(self, recurse=False).items():
            if _is_attrs_instance(value) and hasattr(value, "freeze"):
                value.freeze()
        self._is_frozen = True  # type: ignore

    cls.freeze = freeze  # type: ignore

    return cls


def _pretty_print_attrs_instance(obj: object, indent: int = 0, use_color: bool = False) -> str:
    """
    Recursively pretty prints attrs objects with color.
    """

    assert attrs.has(obj.__class__)

    lines: list[str] = []
    for attribute in attrs.fields(obj.__class__):
        value = getattr(obj, attribute.name)
        if attrs.has(value.__class__):
            if use_color:
                lines.append("   " * indent + Color.cyan("* ") + Color.green(attribute.name) + ":")
            else:
                lines.append("   " * indent + "* " + attribute.name + ":")
            lines.append(_pretty_print_attrs_instance(value, indent + 1, use_color))
        else:
            if use_color:
                lines.append(
                    "   " * indent + Color.cyan("* ") + Color.green(attribute.name) + ": " + Color.yellow(value)
                )
            else:
                lines.append("   " * indent + "* " + attribute.name + ": " + str(value))
    return "\n".join(lines)


def pretty_print_overrides(overrides: Optional[list[str]] = None, use_color: bool = False) -> str:
    """
    Pretty prints overrides.
    """

    lines: list[str] = []
    lines.append(Color.cyan("* ") + Color.green("overrides") + ": ")
    for override in overrides:
        if override == "--":
            continue
        attribute_name, attribute_value = override.split("=")
        if use_color:
            lines.append("   " + Color.cyan("* ") + Color.green(attribute_name) + ": " + Color.yellow(attribute_value))
        else:
            lines.append("   " + "* " + attribute_name + ": " + str(attribute_value))

    return "\n".join(lines)


@make_freezable
@attrs.define(slots=False)
class JobConfig:
    # Project name.
    project: str = ""
    # Experiment name.
    group: str = ""
    # Run/job name.
    name: str = ""

    @property
    def path(self) -> str:
        return f"{self.project}/{self.group}/{self.name}"

    @property
    def path_local(self) -> str:
        local_root = os.environ.get("OUTPUT_ROOT", "checkpoints")
        return f"{local_root}/{self.path}"


@make_freezable
@attrs.define(slots=False)
class EMAConfig:
    # Enable tracking a set of exponential moving average (EMA) weights.
    enabled: bool = False
    # EMA decay rate.
    beta: float = 0.9999
    # Enable removing "_orig_mod-" from buffer names that is added by torch.compile
    torch_compile_buffer_renaming: bool = False


@make_freezable
@attrs.define(slots=False)
class DDPConfig:
    # Traverse the computation graph to find parameters that don't receive gradients.
    find_unused_parameters: bool = False
    # Set to True if the computation graph does not change during the whole training loop.
    static_graph: bool = True
    # Set to True if we want to synchronize buffers. Set to False if the sync is going to be handled elsewhere.
    broadcast_buffers: bool = True


@make_freezable
@attrs.define(slots=False)
class CuDNNConfig:
    # Set to True for better reproducibility of the results (only using deterministic cudnn functions).
    deterministic: bool = False
    # If set to True, cudnn will benchmark several algorithms and pick the fastest one.
    benchmark: bool = True


@make_freezable
@attrs.define(slots=False)
class JITConfig:
    # Enable exporting a JIT compiled model.
    enabled: bool = False
    # Input tensor shape, for example input.
    input_shape: Union[list[int], None] = None
    # Device to compile onto.
    device: str = "cuda"
    # # Data type to compile onto.
    dtype: str = "bfloat16"
    # Strict mode for PyTorch JIT.
    strict: bool = True


@make_freezable
@attrs.define(slots=False)
class CheckpointConfig:
    # possible checkpoint class
    type: Optional[Dict] = None
    # for dcp, whether to use async mode
    dcp_async_mode_enabled: bool = False
    # Save the checkpoint every N iterations.
    save_iter: int = 999999999
    # Path of model weights to resume the checkpoint from.
    load_path: str = ""
    # Whether to load the training states (optimizer/scheduler/grad-scaler) from the checkpoint path.
    load_training_state: bool = False
    # Whether to load the scheduler state only from the checkpoint path. If load_training_state is True, this will be ignored.
    only_load_scheduler_state: bool = False
    # Load state_dict to the models in strict mode.
    strict_resume: bool = True
    # Print detailed information during checkpoint saving/loading.
    verbose: bool = True
    # Configs for JIT compiling EMA model.
    jit: JITConfig = attrs.field(factory=JITConfig)
    # keys not to resume from the checkpoint, choices: ["model", "optim", "scheduler", "trainer"]
    keys_not_to_resume: list[str] = []
    # Whether to use the local filesystem for broadcasting checkpoint data (used for Tensor Parallel Checkpointer).
    broadcast_via_filesystem: bool = False
    load_ema_to_reg: bool = False
    async_saving: bool = True


@make_freezable
@attrs.define(slots=False)
class TrainerConfig:
    from cosmos_predict1.utils.trainer import Trainer

    type: Type[Trainer] = Trainer
    # Set the callback class.
    # Defaults to the callbacks below.
    callbacks: LazyDict = LazyDict(
        dict(
            ema=L(callback.EMAModelCallback)(),
            progress_bar=L(callback.ProgressBarCallback)(),
        )
    )
    # distributed parallelism strategy
    distributed_parallelism: str = "ddp"
    # Distributed data parallel configs.
    ddp: DDPConfig = attrs.field(factory=DDPConfig)
    # cuDNN configs.
    cudnn: CuDNNConfig = attrs.field(factory=CuDNNConfig)
    # Set the random seed.
    seed: int = 0
    # Gradient scaler arguments (for torch.amp.GradScaler).
    grad_scaler_args: dict = attrs.field(factory=lambda: dict(enabled=False))
    # Maximum number of iterations to train the model.
    max_iter: int = 999999999
    # Maximum number of iterations to validate the model. If None, validate on the entire dataset.
    max_val_iter: int | None = None
    # How often we log the training stats.
    logging_iter: int = 100
    # Whether we want to run the validation routines.
    run_validation: bool = True
    # How often we evaluate on the validation set.
    validation_iter: int = 999999999
    # Kill the process after N seconds since the last iteration (usually means dead job).
    timeout_period: int = 999999999
    # Tensor memory organization format.
    memory_format: torch.memory_format = torch.preserve_format
    # Gradient accumulation (update step every N iteration).
    grad_accum_iter: int = 1
    # # Profiling config
    # profiling: Profiling = attrs.field(factory=Profiling)


@make_freezable
@attrs.define(slots=False)
class Config:
    """Config for a job.

    See /README.md/Configuration System for more info.
    """

    # Model configs.
    model: LazyDict
    # Optimizer configs.
    optimizer: LazyDict = LazyDict(dict(dummy=None))
    # Scheduler configs.
    scheduler: LazyDict = LazyDict(dict(dummy=None))
    # Training data configs.
    dataloader_train: LazyDict = LazyDict(dict(dummy=None))
    # Validation data configs.
    dataloader_val: LazyDict = LazyDict(dict(dummy=None))

    # Training job configs.
    job: JobConfig = attrs.field(factory=JobConfig)

    # Trainer configs.
    trainer: TrainerConfig = attrs.field(factory=TrainerConfig)

    # Megatron-Core configs
    model_parallel: ModelParallelConfig = attrs.field(factory=ModelParallelConfig)

    # Checkpointer configs.
    checkpoint: CheckpointConfig = attrs.field(factory=CheckpointConfig)

    def pretty_print(self, use_color: bool = False) -> str:
        return _pretty_print_attrs_instance(self, 0, use_color)

    # Training job configs.
    job: JobConfig = attrs.field(factory=JobConfig)

    def to_dict(self) -> dict[str, Any]:
        return attrs.asdict(self)

    def validate(self) -> None:
        """Validate that the config has all required fields."""
        assert self.job.project != "", "Project name is required."
        assert self.job.group != "", "Group name is required."
        assert self.job.name != "", "Job name is required."