Spaces:
Build error
Build error
File size: 15,308 Bytes
b6af722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from contextlib import contextmanager
from typing import TYPE_CHECKING, Any, Generator, List, Optional, Union
import numpy as np
import torch
from megatron.core import parallel_state
from cosmos_predict1.utils import distributed, log
if TYPE_CHECKING:
from cosmos_predict1.utils.model import Model
class FastEmaModelUpdater:
"""
This class is used to update target model~(EMA) given source model~(regular model) and beta.
The method interaface mimic :class:`EMAModelTracker` and :class:`PowerEMATracker`.
Different from two classes, this class does not maintain the EMA model weights as buffers. It expects the user to have two module with same architecture and weights shape.
The class is proposed to work with FSDP model where above two classes are not working as expected. Besides, it is strange to claim model weights as buffers and do unnecessary name changing in :class:`EMAModelTracker` and :class:`PowerEMATracker`. Moeving forward, we should use this class instead of above two classes.
"""
def __init__(self):
# Flag to indicate whether the cache is taken or not. Useful to avoid cache overwrite
self.is_cached = False
def update_average(self, src_model: torch.nn.Module, tgt_model: torch.nn.Module, beta: float = 0.9999) -> None:
target_list = []
source_list = []
for tgt_params, src_params in zip(tgt_model.parameters(), src_model.parameters()):
assert (
tgt_params.dtype == torch.float32
), f"EMA model only works in FP32 dtype, got {tgt_params.dtype} instead."
target_list.append(tgt_params)
source_list.append(src_params.data)
torch._foreach_mul_(target_list, beta)
torch._foreach_add_(target_list, source_list, alpha=1.0 - beta)
def copy_to(self, src_model: torch.nn.Module, tgt_model: torch.nn.Module) -> None:
for tgt_params, src_params in zip(tgt_model.parameters(), src_model.parameters()):
tgt_params.data.copy_(src_params.data)
def cache(self, parameters: Any, is_cpu: bool = False) -> None:
"""Save the current parameters for restoring later.
Args:
parameters (iterable): Iterable of torch.nn.Parameter to be temporarily stored.
"""
assert self.is_cached is False, "EMA cache is already taken. Did you forget to restore it?"
device = "cpu" if is_cpu else "cuda"
self.collected_params = [param.clone().to(device) for param in parameters]
self.is_cached = True
def restore(self, parameters: Any) -> None:
"""Restore the parameters in self.collected_params.
Useful to validate the model with EMA parameters without affecting the
original optimization process. Store the parameters before copy_to().
After validation (or model saving), use this to restore the former parameters.
Args:
parameters (iterable): Iterable of torch.nn.Parameter to be updated with the stored parameters.
"""
assert self.is_cached, "EMA cache is not taken yet."
for c_param, param in zip(self.collected_params, parameters, strict=False):
param.data.copy_(c_param.data.type_as(param.data))
self.collected_params = []
# Release the cache after we call restore
self.is_cached = False
def get_buffer_name(param_name: str, torch_compile_buffer_renaming: bool = False) -> str:
"""
This function creates buffer name used by EMA from parameter's name
Args:
param_name (str): Model's parameter name
Returns:
buffer_name (str): buffer name to be used for given parameter name
"""
buffer_name = param_name.replace(".", "-")
if torch_compile_buffer_renaming:
# torch.compile() adds _orig_mod to state dict names, this way we get original name
buffer_name = buffer_name.replace("_orig_mod-", "")
return buffer_name
class EMAModelTracker(torch.nn.Module):
"""This is a class to track the EMA model weights.
The EMA weights are registered as buffers, which are extractable as state dicts. The names follow those of the
regular weights, except all "." are replaced with "-" (limitation of register_buffer()). This is similar to SDXL's
implementation of EMA. There are no optimizable parameters.
Attributes:
collected_params (list): temporarily stores the regular weights while in EMA mode.
beta (float): EMA decay rate. (default: 0.9999).
torch_compile_buffer_renaming (bool): whether to remove '_orig_mod-' from buffer names when torch.compile is used
"""
def __init__(self, model: Model, beta: float = 0.9999, torch_compile_buffer_renaming: bool = False):
"""Constructor of the EMA model weight tracker.
Args:
model (Model): The PyTorch model.
beta (float): EMA decay rate. (default: 0.9999).
"""
super().__init__()
self.torch_compile_buffer_renaming: bool = torch_compile_buffer_renaming
if not 0.0 <= beta <= 1.0:
raise ValueError("Decay must be between 0 and 1")
self.beta = beta
for name, param in model.named_parameters():
if param.requires_grad:
buffer_name = get_buffer_name(name, self.torch_compile_buffer_renaming)
self.register_buffer(buffer_name, param.clone().detach().data)
self.collected_params = []
# Flag to indicate whether the cache is taken or not. Useful to avoid cache overwrite
self.is_cached = False
@torch.no_grad()
def update_average(self, model: Model, iteration: Optional[int] = None) -> None:
del iteration
target_list = []
source_list = []
ema_buffers = self.state_dict()
for name, param in model.named_parameters():
if param.requires_grad:
buffer_name = get_buffer_name(name, self.torch_compile_buffer_renaming)
buffer = ema_buffers[buffer_name]
assert buffer.dtype == torch.float32, f"EMA model only works in FP32 dtype, got {buffer.dtype} instead."
target_list.append(buffer)
source_list.append(param.data)
torch._foreach_mul_(target_list, self.beta)
torch._foreach_add_(target_list, source_list, alpha=1.0 - self.beta)
def copy_to(self, model: Model) -> None:
ema_buffers = self.state_dict()
for name, param in model.named_parameters():
if param.requires_grad:
buffer_name = get_buffer_name(name, self.torch_compile_buffer_renaming)
buffer = ema_buffers[buffer_name]
param.data.copy_(buffer.data)
def cache(self, parameters: Any, is_cpu: bool = False) -> None:
"""Save the current parameters for restoring later.
Args:
parameters (iterable): Iterable of torch.nn.Parameter to be temporarily stored.
"""
assert self.is_cached is False, "EMA cache is already taken. Did you forget to restore it?"
device = "cpu" if is_cpu else "cuda"
self.collected_params = [param.clone().to(device) for param in parameters]
self.is_cached = True
def restore(self, parameters: Any) -> None:
"""Restore the parameters in self.collected_params.
Useful to validate the model with EMA parameters without affecting the
original optimization process. Store the parameters before copy_to().
After validation (or model saving), use this to restore the former parameters.
Args:
parameters (iterable): Iterable of torch.nn.Parameter to be updated with the stored parameters.
"""
assert self.is_cached, "EMA cache is not taken yet."
for c_param, param in zip(self.collected_params, parameters, strict=False):
param.data.copy_(c_param.data.type_as(param.data))
self.collected_params = []
# Release the cache after we call restore
self.is_cached = False
@classmethod
def initialize_multi_rank_ema(
cls, model: torch.nn.Module, rate: Union[float, List[float]], num: int = 1, enabled: bool = True
) -> Optional[EMAModelTracker]:
"""
Class method to initialize per rank EMA Model Tracker with different rate.
Each rank will have a different rate based on the given configuration, resulting in different EMA weights.
Args:
model (torch.nn.Module): The neural network model to be tracked.
rate (Union[float, List[float]]): The decay rate(s) for the EMA. If a list is provided,
it corresponds to rates for different ranks.
num (int, optional): The number of leading ranks to consider for different rates.
Defaults to 1.
enabled (bool, optional): Flag to enable or disable the creation of the tracker.
If False, returns None. Defaults to True.
Returns:
Optional[EMAModelTracker]: An instance of EMAModelTracker if enabled, otherwise None.
Example:
>>> model = torch.nn.Linear(10, 2)
>>> tracker = EMAModelTracker.initialize_ema_from_settings(model, rate=[0.1, 0.2], num=2)
>>> print(tracker)
Notes:
If `rate` is a list and the current rank is less than `num`, the rate for the current rank
is used. If the current rank exceeds `num`, the first rate in the list is used by default.
"""
if not enabled:
return None
if parallel_state.is_initialized():
cur_dp_rank = parallel_state.get_data_parallel_rank(with_context_parallel=True)
log.critical(f"using MCore parallel_state for EMA initialization. DP RANK: {cur_dp_rank}", rank0_only=False)
log.warning("It should not used together with FSDP!")
else:
cur_dp_rank = distributed.get_rank()
log.critical(f"using torch.distributed for EMA initialization. DP RANK: {cur_dp_rank}", rank0_only=False)
rate = rate if isinstance(rate, list) else [rate]
num = min(num, len(rate))
rate = rate[cur_dp_rank] if cur_dp_rank < num else rate[0]
if cur_dp_rank < num:
print(f"EMAModelTracker: rank {cur_dp_rank}, rate {rate}")
return cls(model, rate)
class PowerEMATracker(EMAModelTracker):
def __init__(self, model: Model, s: float = 0.1, torch_compile_buffer_renaming: bool = False):
"""Constructor of the EMA model weight tracker.
Args:
model (Model): The PyTorch model.
s (float): EMA decay rate. See EDM2 paper
torch_compile_buffer_renaming (bool): whether to remove '_orig_mod-' from buffer names when torch.compile is used
"""
super().__init__(model=model, beta=0.0, torch_compile_buffer_renaming=torch_compile_buffer_renaming)
self.exp = np.roots([1, 7, 16 - s**-2, 12 - s**-2]).real.max()
@torch.no_grad()
def update_average(self, model: Model, iteration: Optional[int] = None) -> None:
if iteration == 0:
beta = 0.0
else:
i = iteration + 1
beta = (1 - 1 / i) ** (self.exp + 1)
self.beta = beta
super().update_average(model, iteration)
@classmethod
def initialize_multi_rank_ema(
cls, model: torch.nn.Module, rate: float, num: int, enabled: bool = True
) -> Optional[PowerEMATracker]:
"""
Class method to initialize per rank EMA Model Tracker with different rate.
Each rank will have a different rate based on the given configuration, resulting in different EMA weights.
Args:
model (torch.nn.Module): The neural network model for which the EMA tracker is being set up.
num (int): The number of ranks for which the rate adjustment is applied. Beyond this, the rate remains unchanged.
rate (float): The base decay rate for the EMA calculation.
enabled (bool, optional): Flag to enable or disable the initialization of the tracker. If False, returns None.
Defaults to True.
Returns:
Optional[PowerEMATracker]: An instance of PowerEMATracker with adjusted rate if enabled, otherwise None.
Raises:
None
Example:
>>> model = torch.nn.Linear(10, 2)
>>> tracker = PowerEMATracker.initialize_multi_rank_ema(model, num=3, rate=0.99)
>>> print(tracker)
Notes:
The decay rate is modified by dividing it by 2 raised to the power of the rank for each rank less than `num`.
If the rank is greater than or equal to `num`, the base rate is used without modification. This approach
allows higher ranked processes to have a less aggressive decay, potentially reflecting their delayed synchronization
in a distributed training scenario.
"""
if not enabled:
return None
if parallel_state.is_initialized():
cur_dp_rank = parallel_state.get_data_parallel_rank(with_context_parallel=True)
log.critical(f"using MCore parallel_state for EMA initialization. DP RANK: {cur_dp_rank}", rank0_only=False)
log.warning("It should not used together with FSDP!")
else:
cur_dp_rank = distributed.get_rank()
log.critical(f"using torch.distributed for EMA initialization. DP RANK: {cur_dp_rank}", rank0_only=False)
divider = 2**cur_dp_rank if cur_dp_rank < num else 1
if cur_dp_rank < num:
print(f"PowerEMATracker: rank {cur_dp_rank}, rate {rate / divider}")
return cls(model, rate / divider)
@contextmanager
def ema_scope(model: Model, enabled: bool = False) -> Generator[None, None, None]:
"""Context manager for switching between regular and EMA model weights.
Args:
model (Model): The PyTorch model.
enabled (bool): Whether switching to EMA weights is enabled (default: False).
"""
if enabled:
assert hasattr(model, "ema") and isinstance(model.ema, (FastEmaModelUpdater, EMAModelTracker, PowerEMATracker))
model.ema.cache(model.parameters())
model.ema.copy_to(model)
log.info("EMA: switched to EMA weights.")
try:
yield None
finally:
if enabled:
model.ema.restore(model.parameters())
log.info("EMA: restored regular weights.")
|