File size: 15,420 Bytes
b6af722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import functools
import os
import signal

import torch
import torch.distributed as dist
import torch.utils.data
from megatron.core import parallel_state

from cosmos_predict1.utils import callback, distributed, ema, log, misc
from cosmos_predict1.utils.checkpointer import Checkpointer
from cosmos_predict1.utils.lazy_config import LazyConfig, instantiate
from cosmos_predict1.utils.model import Model


class Trainer:
    """The base trainer class.

    All trainers should inherit Trainer. It contains the basic functionality for model training
    (particularly suited for large-scale training), including data parallel (DDP/FSDP), model weight average (EMA),
    mixed-precision training (fp16/bf16).

    Attributes:
        checkpointer (Checkpointer): checkpointer object to save/load model weights and optimizer states.
        training_timer (misc.Timer): Timer object to time code blocks and functions.
    """

    def __init__(self, config):
        """Constructor of the trainer.

        Args:
            config (Config): The config object for the codebase.
        """
        super().__init__()
        self.config = config
        # Set up the distributed computing environment.
        with misc.timer("init_distributed"):
            distributed.init()
            # Set up parallel states.
            if hasattr(config.model, "context_parallel_size"):
                if config.model_parallel.context_parallel_size > 1:
                    raise ValueError(
                        "Both config.model.context_parallel_size and config.model_parallel.context_parallel_size are set. "
                        "config.model.context_parallel_size is deprecated. Please only set config.model_parallel.context_parallel_size."
                    )
                else:
                    log.critical(
                        "Using deprecated config.model.context_parallel_size. Please use config.model_parallel.context_parallel_size instead."
                    )
                    config.model_parallel.context_parallel_size = config.model.context_parallel_size
            parallel_state.initialize_model_parallel(
                pipeline_model_parallel_size=config.model_parallel.pipeline_model_parallel_size,
                tensor_model_parallel_size=config.model_parallel.tensor_model_parallel_size,
                context_parallel_size=config.model_parallel.context_parallel_size,
            )
            # `config.model_parallel.sequence_parallel` is a bool that indicates whether to use sequence parallelism.
            # It is not part of the original `parallel_state` API, so we need to set it manually.
            parallel_state.sequence_parallel = config.model_parallel.sequence_parallel
            if parallel_state.sequence_parallel:
                os.environ["CUDA_DEVICE_MAX_CONNECTIONS"] = "1"

        # Create the local job directory, save the config file, and pipe to a local log.
        if distributed.is_rank0():
            os.makedirs(config.job.path_local, exist_ok=True)
            # Save the config as .pkl for reproducibility.
            LazyConfig.save_pkl(config, f"{config.job.path_local}/config.pkl")
            # Save the config as .yaml for reading or parsing experiment hyperparameters.
            LazyConfig.save_yaml(config, f"{config.job.path_local}/config.yaml")
        dist.barrier()
        log.init_loguru_file(f"{config.job.path_local}/stdout.log")
        if distributed.is_rank0():
            # Print important environment variables and the effective config.
            log.info("Config:\n" + config.pretty_print(use_color=True))
        misc.print_environ_variables(["TORCH_HOME", "OUTPUT_ROOT"])
        # Set the random seed. If multi-GPU, different ranks are set with different seeds.
        misc.set_random_seed(seed=config.trainer.seed, by_rank=True)
        # Initialize cuDNN.
        torch.backends.cudnn.deterministic = config.trainer.cudnn.deterministic
        torch.backends.cudnn.benchmark = config.trainer.cudnn.benchmark
        # Floating-point precision settings.
        torch.backends.cudnn.allow_tf32 = torch.backends.cuda.matmul.allow_tf32 = True
        # Initialize the callback functions.
        self.callbacks = callback.CallBackGroup(config=config, trainer=self)
        # Initialize the model checkpointer.
        if config.checkpoint.type is None:
            self.checkpointer = Checkpointer(config.checkpoint, config.job, callbacks=self.callbacks)
        else:
            self.checkpointer: Checkpointer = instantiate(
                config.checkpoint.type, config.checkpoint, config.job, callbacks=self.callbacks
            )
        # Initialize the timer for speed benchmarking.
        self.training_timer = misc.TrainingTimer()
        # Send a TimeoutError if a training step takes over timeout_period seconds.
        signal.signal(signal.SIGALRM, functools.partial(misc.timeout_handler, config.trainer.timeout_period))  # type: ignore

    def train(
        self,
        model: Model,
        dataloader_train: torch.utils.data.DataLoader,
        dataloader_val: torch.utils.data.DataLoader,
    ) -> None:
        """The training function.

        Args:
            model (Model): The PyTorch model.
            dataloader_train (torch.utils.data.DataLoader): The training data loader.
            dataloader_val (torch.utils.data.DataLoader): The validation data loader.
        """
        # Leaving this for backward compability for now, but we can think about moving this to model.on_train_start for all models.
        model = model.to("cuda", memory_format=self.config.trainer.memory_format)  # type: ignore
        model.on_train_start(self.config.trainer.memory_format)

        # Initialize the optimizer, scheduler, and grad_scaler.
        self.callbacks.on_optimizer_init_start()
        optimizer, scheduler = model.init_optimizer_scheduler(self.config.optimizer, self.config.scheduler)
        grad_scaler = torch.amp.GradScaler("cuda", **self.config.trainer.grad_scaler_args)
        self.callbacks.on_optimizer_init_end()
        # Load the model checkpoint and get the starting iteration number.
        iteration = self.checkpointer.load(model, optimizer, scheduler, grad_scaler)
        grad_accum_iter = 0
        log.critical(f"Distributed parallelism mode: {self.config.trainer.distributed_parallelism}")
        if self.config.trainer.distributed_parallelism == "ddp":
            # Create a DDP model wrapper.
            model_ddp = distributed.parallel_model_wrapper(self.config.trainer.ddp, model)
        elif self.config.trainer.distributed_parallelism == "fsdp":
            model_ddp = model
        else:
            raise ValueError(f"Unknown distributed parallelism mode: {self.config.trainer.distributed_parallelism}")
        log.info("Starting training...")
        self.callbacks.on_train_start(model, iteration=iteration)
        # Initial validation.
        if self.config.trainer.run_validation and iteration == 0:
            self.validate(model, dataloader_val, iteration=iteration)
        _end_training = False
        while True:
            dataloader_train_iter = iter(dataloader_train)
            while True:
                self.callbacks.on_before_dataloading(iteration)
                with self.training_timer("dataloader_train"):
                    try:
                        data_batch = next(dataloader_train_iter)
                        for k in data_batch.keys():
                            if torch.is_tensor(data_batch[k]):
                                data_batch[k] = data_batch[k].cuda()
                    except StopIteration:
                        break
                self.callbacks.on_after_dataloading(iteration)
                # If max_iter is reached, exit the training loop.
                if iteration >= self.config.trainer.max_iter:
                    _end_training = True
                    break
                # Move all tensors in the data batch to GPU device.
                data_batch = misc.to(data_batch, device="cuda")
                # The actual training step.
                self.callbacks.on_training_step_start(model, data_batch, iteration=iteration)
                if not model.training:
                    model_ddp.train()
                assert model_ddp.training, "model_ddp is not in training mode."
                assert model.training, "model is not in training mode."
                output_batch, loss, grad_accum_iter = self.training_step(
                    model_ddp,
                    optimizer,
                    scheduler,
                    grad_scaler,
                    data_batch,
                    iteration=iteration,
                    grad_accum_iter=grad_accum_iter,
                )
                # Do the following when an actual optimizer (update) step has been made.
                iteration += 1
                # Save checkpoint.
                if iteration % self.config.checkpoint.save_iter == 0:
                    async_saving = getattr(self.config.checkpoint, "async_saving", True)
                    self.checkpointer.save(
                        model, optimizer, scheduler, grad_scaler, iteration=iteration, async_saving=async_saving
                    )
                self.callbacks.on_training_step_end(model, data_batch, output_batch, loss, iteration=iteration)
                # Validation.
                if self.config.trainer.run_validation and iteration % self.config.trainer.validation_iter == 0:
                    self.validate(model, dataloader_val, iteration=iteration)
                # This iteration is successful; reset the timeout signal.
                signal.alarm(self.config.trainer.timeout_period)
            if _end_training:
                break
        log.success("Done with training.")
        if iteration % self.config.checkpoint.save_iter != 0:
            async_saving = getattr(self.config.checkpoint, "async_saving", True)
            self.checkpointer.save(
                model, optimizer, scheduler, grad_scaler, iteration=iteration, async_saving=async_saving
            )
        self.callbacks.on_train_end(model, iteration=iteration)
        self.checkpointer.finalize()
        distributed.barrier()
        self.callbacks.on_app_end()

    def training_step(
        self,
        model_ddp: torch.nn.Module | distributed.DistributedDataParallel,
        optimizer: torch.optim.Optimizer,
        scheduler: torch.optim.lr_scheduler.LRScheduler,
        grad_scaler: torch.amp.GradScaler,
        data: dict[str, torch.Tensor],
        iteration: int = 0,
        grad_accum_iter: int = 0,
    ) -> tuple[dict[str, torch.Tensor], torch.Tensor, int]:
        """The training step.

        Args:
            model_ddp (torch.nn.Module | distributed.DistributedDataParallel): The model with a DDP wrapper or, the bare
              module, depending on whether distributed training is enabled or not.
            optimizer (torch.optim.Optimizer): The model optimizer.
            scheduler (torch.optim.lr_scheduler.LRScheduler): The optimization scheduler.
            grad_scaler (torch.amp.GradScaler): The gradient scaler (for mixed precision training).
            data (dict[str, torch.Tensor]): Data batch (dictionary of tensors).
            iteration (int): Current iteration number.
            grad_accum_iter (int): Number of gradient accumulation iterations.

        Returns:
            output (dict[str, torch.Tensor]): The model output from the training data batch (dictionary of tensors).
            loss (torch.Tensor): The total loss of the training data batch.
        """
        # Only let DDP sync gradient at the last iteration of the gradient accumulation window
        with distributed.ddp_sync_grad(model_ddp, grad_accum_iter == self.config.trainer.grad_accum_iter - 1):
            with self.training_timer("forward"):
                output_batch, loss = model_ddp.training_step(data, iteration)
            self.callbacks.on_before_backward(model_ddp, loss, iteration=iteration)
            with self.training_timer("backward"):
                loss_scaled = grad_scaler.scale(loss / self.config.trainer.grad_accum_iter)
                loss_scaled.backward()
                if self.config.trainer.distributed_parallelism == "ddp":
                    model_ddp.module.on_after_backward()
                else:
                    model_ddp.on_after_backward()
            self.callbacks.on_after_backward(model_ddp, iteration=iteration)
        grad_accum_iter += 1
        if grad_accum_iter == self.config.trainer.grad_accum_iter:
            with self.training_timer("optimizer_step"):
                self.callbacks.on_before_optimizer_step(
                    model_ddp, optimizer, scheduler, grad_scaler, iteration=iteration
                )
                grad_scaler.step(optimizer)
                grad_scaler.update()
                scheduler.step()
                self.callbacks.on_before_zero_grad(model_ddp, optimizer, scheduler, iteration=iteration)
                if self.config.trainer.distributed_parallelism == "ddp":
                    model_ddp.module.on_before_zero_grad(optimizer, scheduler, iteration=iteration)
                else:
                    model_ddp.on_before_zero_grad(optimizer, scheduler, iteration=iteration)
                optimizer.zero_grad(set_to_none=True)
            grad_accum_iter = 0
        return output_batch, loss, grad_accum_iter

    @torch.no_grad()
    def validate(self, model: Model, dataloader_val: torch.utils.data.DataLoader, iteration: int = 0) -> None:
        """Validate on the full validation dataset.

        Args:
            model (Model): The PyTorch model.
            dataloader_val (torch.utils.data.DataLoader): The validation data loader.
            iteration (int): Current iteration number.
        """
        self.callbacks.on_validation_start(model, dataloader_val, iteration=iteration)
        model.eval()
        # Evaluate on the full validation set.
        with ema.ema_scope(model, enabled=model.config.ema.enabled):
            for val_iter, data_batch in enumerate(dataloader_val):
                if self.config.trainer.max_val_iter is not None and val_iter >= self.config.trainer.max_val_iter:
                    break
                data_batch = misc.to(data_batch, device="cuda")
                self.callbacks.on_validation_step_start(model, data_batch, iteration=iteration)
                output_batch, loss = model.validation_step(data_batch, iteration)
                self.callbacks.on_validation_step_end(model, data_batch, output_batch, loss, iteration=iteration)
        self.callbacks.on_validation_end(model, iteration=iteration)