Spaces:
Build error
Build error
File size: 15,420 Bytes
b6af722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
import os
import signal
import torch
import torch.distributed as dist
import torch.utils.data
from megatron.core import parallel_state
from cosmos_predict1.utils import callback, distributed, ema, log, misc
from cosmos_predict1.utils.checkpointer import Checkpointer
from cosmos_predict1.utils.lazy_config import LazyConfig, instantiate
from cosmos_predict1.utils.model import Model
class Trainer:
"""The base trainer class.
All trainers should inherit Trainer. It contains the basic functionality for model training
(particularly suited for large-scale training), including data parallel (DDP/FSDP), model weight average (EMA),
mixed-precision training (fp16/bf16).
Attributes:
checkpointer (Checkpointer): checkpointer object to save/load model weights and optimizer states.
training_timer (misc.Timer): Timer object to time code blocks and functions.
"""
def __init__(self, config):
"""Constructor of the trainer.
Args:
config (Config): The config object for the codebase.
"""
super().__init__()
self.config = config
# Set up the distributed computing environment.
with misc.timer("init_distributed"):
distributed.init()
# Set up parallel states.
if hasattr(config.model, "context_parallel_size"):
if config.model_parallel.context_parallel_size > 1:
raise ValueError(
"Both config.model.context_parallel_size and config.model_parallel.context_parallel_size are set. "
"config.model.context_parallel_size is deprecated. Please only set config.model_parallel.context_parallel_size."
)
else:
log.critical(
"Using deprecated config.model.context_parallel_size. Please use config.model_parallel.context_parallel_size instead."
)
config.model_parallel.context_parallel_size = config.model.context_parallel_size
parallel_state.initialize_model_parallel(
pipeline_model_parallel_size=config.model_parallel.pipeline_model_parallel_size,
tensor_model_parallel_size=config.model_parallel.tensor_model_parallel_size,
context_parallel_size=config.model_parallel.context_parallel_size,
)
# `config.model_parallel.sequence_parallel` is a bool that indicates whether to use sequence parallelism.
# It is not part of the original `parallel_state` API, so we need to set it manually.
parallel_state.sequence_parallel = config.model_parallel.sequence_parallel
if parallel_state.sequence_parallel:
os.environ["CUDA_DEVICE_MAX_CONNECTIONS"] = "1"
# Create the local job directory, save the config file, and pipe to a local log.
if distributed.is_rank0():
os.makedirs(config.job.path_local, exist_ok=True)
# Save the config as .pkl for reproducibility.
LazyConfig.save_pkl(config, f"{config.job.path_local}/config.pkl")
# Save the config as .yaml for reading or parsing experiment hyperparameters.
LazyConfig.save_yaml(config, f"{config.job.path_local}/config.yaml")
dist.barrier()
log.init_loguru_file(f"{config.job.path_local}/stdout.log")
if distributed.is_rank0():
# Print important environment variables and the effective config.
log.info("Config:\n" + config.pretty_print(use_color=True))
misc.print_environ_variables(["TORCH_HOME", "OUTPUT_ROOT"])
# Set the random seed. If multi-GPU, different ranks are set with different seeds.
misc.set_random_seed(seed=config.trainer.seed, by_rank=True)
# Initialize cuDNN.
torch.backends.cudnn.deterministic = config.trainer.cudnn.deterministic
torch.backends.cudnn.benchmark = config.trainer.cudnn.benchmark
# Floating-point precision settings.
torch.backends.cudnn.allow_tf32 = torch.backends.cuda.matmul.allow_tf32 = True
# Initialize the callback functions.
self.callbacks = callback.CallBackGroup(config=config, trainer=self)
# Initialize the model checkpointer.
if config.checkpoint.type is None:
self.checkpointer = Checkpointer(config.checkpoint, config.job, callbacks=self.callbacks)
else:
self.checkpointer: Checkpointer = instantiate(
config.checkpoint.type, config.checkpoint, config.job, callbacks=self.callbacks
)
# Initialize the timer for speed benchmarking.
self.training_timer = misc.TrainingTimer()
# Send a TimeoutError if a training step takes over timeout_period seconds.
signal.signal(signal.SIGALRM, functools.partial(misc.timeout_handler, config.trainer.timeout_period)) # type: ignore
def train(
self,
model: Model,
dataloader_train: torch.utils.data.DataLoader,
dataloader_val: torch.utils.data.DataLoader,
) -> None:
"""The training function.
Args:
model (Model): The PyTorch model.
dataloader_train (torch.utils.data.DataLoader): The training data loader.
dataloader_val (torch.utils.data.DataLoader): The validation data loader.
"""
# Leaving this for backward compability for now, but we can think about moving this to model.on_train_start for all models.
model = model.to("cuda", memory_format=self.config.trainer.memory_format) # type: ignore
model.on_train_start(self.config.trainer.memory_format)
# Initialize the optimizer, scheduler, and grad_scaler.
self.callbacks.on_optimizer_init_start()
optimizer, scheduler = model.init_optimizer_scheduler(self.config.optimizer, self.config.scheduler)
grad_scaler = torch.amp.GradScaler("cuda", **self.config.trainer.grad_scaler_args)
self.callbacks.on_optimizer_init_end()
# Load the model checkpoint and get the starting iteration number.
iteration = self.checkpointer.load(model, optimizer, scheduler, grad_scaler)
grad_accum_iter = 0
log.critical(f"Distributed parallelism mode: {self.config.trainer.distributed_parallelism}")
if self.config.trainer.distributed_parallelism == "ddp":
# Create a DDP model wrapper.
model_ddp = distributed.parallel_model_wrapper(self.config.trainer.ddp, model)
elif self.config.trainer.distributed_parallelism == "fsdp":
model_ddp = model
else:
raise ValueError(f"Unknown distributed parallelism mode: {self.config.trainer.distributed_parallelism}")
log.info("Starting training...")
self.callbacks.on_train_start(model, iteration=iteration)
# Initial validation.
if self.config.trainer.run_validation and iteration == 0:
self.validate(model, dataloader_val, iteration=iteration)
_end_training = False
while True:
dataloader_train_iter = iter(dataloader_train)
while True:
self.callbacks.on_before_dataloading(iteration)
with self.training_timer("dataloader_train"):
try:
data_batch = next(dataloader_train_iter)
for k in data_batch.keys():
if torch.is_tensor(data_batch[k]):
data_batch[k] = data_batch[k].cuda()
except StopIteration:
break
self.callbacks.on_after_dataloading(iteration)
# If max_iter is reached, exit the training loop.
if iteration >= self.config.trainer.max_iter:
_end_training = True
break
# Move all tensors in the data batch to GPU device.
data_batch = misc.to(data_batch, device="cuda")
# The actual training step.
self.callbacks.on_training_step_start(model, data_batch, iteration=iteration)
if not model.training:
model_ddp.train()
assert model_ddp.training, "model_ddp is not in training mode."
assert model.training, "model is not in training mode."
output_batch, loss, grad_accum_iter = self.training_step(
model_ddp,
optimizer,
scheduler,
grad_scaler,
data_batch,
iteration=iteration,
grad_accum_iter=grad_accum_iter,
)
# Do the following when an actual optimizer (update) step has been made.
iteration += 1
# Save checkpoint.
if iteration % self.config.checkpoint.save_iter == 0:
async_saving = getattr(self.config.checkpoint, "async_saving", True)
self.checkpointer.save(
model, optimizer, scheduler, grad_scaler, iteration=iteration, async_saving=async_saving
)
self.callbacks.on_training_step_end(model, data_batch, output_batch, loss, iteration=iteration)
# Validation.
if self.config.trainer.run_validation and iteration % self.config.trainer.validation_iter == 0:
self.validate(model, dataloader_val, iteration=iteration)
# This iteration is successful; reset the timeout signal.
signal.alarm(self.config.trainer.timeout_period)
if _end_training:
break
log.success("Done with training.")
if iteration % self.config.checkpoint.save_iter != 0:
async_saving = getattr(self.config.checkpoint, "async_saving", True)
self.checkpointer.save(
model, optimizer, scheduler, grad_scaler, iteration=iteration, async_saving=async_saving
)
self.callbacks.on_train_end(model, iteration=iteration)
self.checkpointer.finalize()
distributed.barrier()
self.callbacks.on_app_end()
def training_step(
self,
model_ddp: torch.nn.Module | distributed.DistributedDataParallel,
optimizer: torch.optim.Optimizer,
scheduler: torch.optim.lr_scheduler.LRScheduler,
grad_scaler: torch.amp.GradScaler,
data: dict[str, torch.Tensor],
iteration: int = 0,
grad_accum_iter: int = 0,
) -> tuple[dict[str, torch.Tensor], torch.Tensor, int]:
"""The training step.
Args:
model_ddp (torch.nn.Module | distributed.DistributedDataParallel): The model with a DDP wrapper or, the bare
module, depending on whether distributed training is enabled or not.
optimizer (torch.optim.Optimizer): The model optimizer.
scheduler (torch.optim.lr_scheduler.LRScheduler): The optimization scheduler.
grad_scaler (torch.amp.GradScaler): The gradient scaler (for mixed precision training).
data (dict[str, torch.Tensor]): Data batch (dictionary of tensors).
iteration (int): Current iteration number.
grad_accum_iter (int): Number of gradient accumulation iterations.
Returns:
output (dict[str, torch.Tensor]): The model output from the training data batch (dictionary of tensors).
loss (torch.Tensor): The total loss of the training data batch.
"""
# Only let DDP sync gradient at the last iteration of the gradient accumulation window
with distributed.ddp_sync_grad(model_ddp, grad_accum_iter == self.config.trainer.grad_accum_iter - 1):
with self.training_timer("forward"):
output_batch, loss = model_ddp.training_step(data, iteration)
self.callbacks.on_before_backward(model_ddp, loss, iteration=iteration)
with self.training_timer("backward"):
loss_scaled = grad_scaler.scale(loss / self.config.trainer.grad_accum_iter)
loss_scaled.backward()
if self.config.trainer.distributed_parallelism == "ddp":
model_ddp.module.on_after_backward()
else:
model_ddp.on_after_backward()
self.callbacks.on_after_backward(model_ddp, iteration=iteration)
grad_accum_iter += 1
if grad_accum_iter == self.config.trainer.grad_accum_iter:
with self.training_timer("optimizer_step"):
self.callbacks.on_before_optimizer_step(
model_ddp, optimizer, scheduler, grad_scaler, iteration=iteration
)
grad_scaler.step(optimizer)
grad_scaler.update()
scheduler.step()
self.callbacks.on_before_zero_grad(model_ddp, optimizer, scheduler, iteration=iteration)
if self.config.trainer.distributed_parallelism == "ddp":
model_ddp.module.on_before_zero_grad(optimizer, scheduler, iteration=iteration)
else:
model_ddp.on_before_zero_grad(optimizer, scheduler, iteration=iteration)
optimizer.zero_grad(set_to_none=True)
grad_accum_iter = 0
return output_batch, loss, grad_accum_iter
@torch.no_grad()
def validate(self, model: Model, dataloader_val: torch.utils.data.DataLoader, iteration: int = 0) -> None:
"""Validate on the full validation dataset.
Args:
model (Model): The PyTorch model.
dataloader_val (torch.utils.data.DataLoader): The validation data loader.
iteration (int): Current iteration number.
"""
self.callbacks.on_validation_start(model, dataloader_val, iteration=iteration)
model.eval()
# Evaluate on the full validation set.
with ema.ema_scope(model, enabled=model.config.ema.enabled):
for val_iter, data_batch in enumerate(dataloader_val):
if self.config.trainer.max_val_iter is not None and val_iter >= self.config.trainer.max_val_iter:
break
data_batch = misc.to(data_batch, device="cuda")
self.callbacks.on_validation_step_start(model, data_batch, iteration=iteration)
output_batch, loss = model.validation_step(data_batch, iteration)
self.callbacks.on_validation_step_end(model, data_batch, output_batch, loss, iteration=iteration)
self.callbacks.on_validation_end(model, iteration=iteration)
|