Spaces:
Build error
Build error
File size: 14,139 Bytes
b6af722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import hashlib
import json
import os
import shutil
from glob import glob
from pathlib import Path
import torch
from huggingface_hub import snapshot_download
from safetensors.torch import load_file
from scripts.download_guardrail_checkpoints import download_guardrail_checkpoints
def parse_args():
parser = argparse.ArgumentParser(description="Download NVIDIA Cosmos Predict1 diffusion models from Hugging Face")
parser.add_argument(
"--model_sizes",
nargs="*",
default=[
"7B",
"14B",
], # Download all by default
choices=["7B", "14B"],
help="Which model sizes to download. Possible values: 7B, 14B",
)
parser.add_argument(
"--model_types",
nargs="*",
default=[
"Text2World",
"Video2World",
], # Download all by default
choices=["Text2World", "Video2World", "Text2World-Sample-AV-Multiview", "Video2World-Sample-AV-Multiview"],
help="Which model types to download. Possible values: Text2World, Video2World",
)
parser.add_argument(
"--checkpoint_dir", type=str, default="checkpoints", help="Directory to save the downloaded checkpoints."
)
args = parser.parse_args()
return args
def convert_pixtral_checkpoint(checkpoint_dir: str, checkpoint_name: str, vit_type: str):
"""
Main function to convert Pixtral vision model weights to checkpoint and optionally verify and save the converted checkpoint.
Args:
checkpoint_dir (str): Path to the checkpoint directory
checkpoint_name (str): Name of the checkpoint
vit_type (str): Type of ViT used in the Pixtral model
This function performs the following steps:
0. Download the checkpoint from Hugging Face
1. Loads the original Pixtral checkpoint
2. Splits the checkpoint into vision encoder, projector, and LLM weights
3. Reorganizes the weights to match the expected format
4. Extracts and verifies the vision encoder configuration
5. Optionally verifies the converted checkpoint by loading it into a VisionTransformer
6. Optionally saves the converted checkpoint and configuration
"""
save_dir = os.path.join(checkpoint_dir, checkpoint_name)
os.makedirs(save_dir, exist_ok=True)
# Save the converted checkpoint
save_path = os.path.join(save_dir, "model.pt")
if os.path.exists(save_path) and os.path.getsize(save_path) > 0:
print(f"Checkpoint {save_path} already exists and is not empty")
return
pixtral_ckpt_dir = os.path.join(checkpoint_dir, "Pixtral-12B-2409")
os.makedirs(pixtral_ckpt_dir, exist_ok=True)
repo_id = "mistralai/Pixtral-12B-2409"
print(f"Downloading {repo_id} to {pixtral_ckpt_dir}...")
snapshot_download(
repo_id=repo_id,
allow_patterns=["params.json", "consolidated.safetensors"],
local_dir=pixtral_ckpt_dir,
local_dir_use_symlinks=False,
)
orig_dtype = torch.get_default_dtype()
dtype = torch.bfloat16
torch.set_default_dtype(dtype)
# Load checkpoint file
ckpt_files = glob(os.path.join(pixtral_ckpt_dir, "*.safetensors"))
assert len(ckpt_files) == 1, "ckpt_dir should contain only one file"
ckpt_path = ckpt_files[0]
ckpt = load_file(ckpt_path)
# Split checkpoint into weights of vision encoder, projector, and LLM
vit_key_prefix = "vision_encoder."
vit_ckpt = {}
for key, value in ckpt.items():
if key.startswith(vit_key_prefix):
vit_ckpt[key.lstrip(vit_key_prefix)] = value
projector_key_prefix = "vision_language_adapter."
projector_ckpt = {}
substring_replacement_map = {
"w_in.": "projector.0.",
"w_out.": "projector.2.",
}
for key, value in ckpt.items():
if key.startswith(projector_key_prefix):
key = key.lstrip(projector_key_prefix)
for old, new in substring_replacement_map.items():
key = key.replace(old, new)
projector_ckpt[key] = value
llm_ckpt = {}
for key, value in ckpt.items():
if key.startswith(vit_key_prefix) or key.startswith(projector_key_prefix):
continue
llm_ckpt[key] = value
vlm_ckpt = {}
for key, value in llm_ckpt.items():
vlm_ckpt["model." + key] = value
for key, value in projector_ckpt.items():
vlm_ckpt["mm_projector." + key] = value
for key, value in vit_ckpt.items():
vlm_ckpt["vision_encoder." + key] = value
# Load config
config_path = os.path.join(pixtral_ckpt_dir, "params.json")
with open(config_path, "r") as f:
pixtral_config = json.load(f)
# Extract the vision encoder configuration
vision_encoder_config = {
"dim": pixtral_config["vision_encoder"]["hidden_size"],
"num_channels": pixtral_config["vision_encoder"]["num_channels"],
"image_size": pixtral_config["vision_encoder"]["image_size"],
"patch_size": pixtral_config["vision_encoder"]["patch_size"],
"rope_theta": pixtral_config["vision_encoder"]["rope_theta"],
"ffn_hidden_size": pixtral_config["vision_encoder"]["intermediate_size"],
"n_layers": pixtral_config["vision_encoder"]["num_hidden_layers"],
"n_heads": pixtral_config["vision_encoder"]["num_attention_heads"],
"n_kv_heads": pixtral_config["vision_encoder"]["num_attention_heads"],
"norm_type": "rmsnorm",
"norm_eps": pixtral_config["norm_eps"],
"image_token_id": pixtral_config["vision_encoder"]["image_token_id"],
}
# Configuration for the 400M ViT of Pixtral 12B VLM
vit_config = dict(
dim=1024,
num_channels=3,
image_size=1024,
patch_size=16,
rope_theta=10000,
ffn_hidden_size=4096,
n_layers=24,
n_heads=16,
n_kv_heads=16,
norm_type="rmsnorm",
norm_eps=1e-5,
image_token_id=10,
)
# Compare the two configurations
for key, value in vit_config.items():
assert vision_encoder_config[key] == value, f"Mismatch in {key}: {vision_encoder_config[key]} != {value}"
llm_config_keys = [
"dim",
"n_layers",
"head_dim",
"hidden_dim",
"n_heads",
"n_kv_heads",
"rope_theta",
"norm_eps",
"vocab_size",
]
assert set(list(pixtral_config.keys())) == set(llm_config_keys + ["vision_encoder"]), "Config keys mismatch"
replace_map = {
"hidden_dim": "ffn_hidden_size",
}
llm_config = {}
for k, v in pixtral_config.items():
if k in llm_config_keys:
llm_config[replace_map.get(k, k)] = v
elif k == "vision_encoder":
llm_config["vision_encoder"] = vit_type
else:
raise ValueError(f"Unknown key: {k}")
ckpt_to_save = {"model": vlm_ckpt, "mm_projector": projector_ckpt, "vision_encoder": vit_ckpt}
torch.save(ckpt_to_save, save_path)
print(f"Model saved to {save_path}")
# Save config
config_path = os.path.join(save_dir, "config.json")
with open(config_path, "w") as f:
json.dump(llm_config, f)
torch.set_default_dtype(orig_dtype) # Reset the default dtype
# Remove the original Pixtral checkpoint
shutil.rmtree(pixtral_ckpt_dir, ignore_errors=True)
print(f"Removed {pixtral_ckpt_dir}")
MD5_CHECKSUM_LOOKUP = {
"Cosmos-Predict1-14B-Text2World/guardrail/video_content_safety_filter/safety_filter.pt": "b46dc2ad821fc3b0d946549d7ade19cf",
"Cosmos-Predict1-14B-Text2World/model.pt": "c69d1c6e51dc78b959040e8c4035a29b",
"Cosmos-Predict1-14B-Video2World/guardrail/video_content_safety_filter/safety_filter.pt": "b46dc2ad821fc3b0d946549d7ade19cf",
"Cosmos-Predict1-14B-Video2World/model.pt": "eaa7aa3678f61d88108c41d7fe201b18",
"Cosmos-Predict1-7B-WorldInterpolator/model.pt": "48a0bdc99d5e41eee05ba8597c4851da",
"Cosmos-Predict1-7B-Text2World/guardrail/video_content_safety_filter/safety_filter.pt": "b46dc2ad821fc3b0d946549d7ade19cf",
"Cosmos-Predict1-7B-Text2World/model.pt": "fe9ed68e16cf37b10e7414c9b3ee81e1",
"Cosmos-Predict1-7B-Video2World/guardrail/video_content_safety_filter/safety_filter.pt": "b46dc2ad821fc3b0d946549d7ade19cf",
"Cosmos-Predict1-7B-Video2World/model.pt": "ebcdb19c4c4a6a0e1e0bb65e346f6867",
"Cosmos-Tokenize1-CV8x8x8-720p/mean_std.pt": "f07680ad7eefae57d698778e2a0c7c96",
"Cosmos-Tokenize1-CV8x8x8-720p/image_mean_std.pt": "9f19fd3312fc1198e4905ada02e68bce",
"Cosmos-UpsamplePrompt1-12B-Text2World/guardrail/video_content_safety_filter/safety_filter.pt": "b46dc2ad821fc3b0d946549d7ade19cf",
"Cosmos-UpsamplePrompt1-12B-Text2World/model.pt": "52d7a6b8b1ac44d856b4c1ea3f8c8c74",
"Cosmos-Predict1-7B-Text2World-Sample-AV-Multiview/model.pt": "e3a6ef070deaae0678acd529dc749ea4",
"Cosmos-Predict1-7B-Video2World-Sample-AV-Multiview/model.pt": "1653f87dce3d558ee01416593552a91c",
"google-t5/t5-11b/pytorch_model.bin": "f890878d8a162e0045a25196e27089a3",
"google-t5/t5-11b/tf_model.h5": "e081fc8bd5de5a6a9540568241ab8973",
}
def get_md5_checksum(checkpoints_dir, model_name):
print("---------------------")
# Check if there are any expected files for this model
expected_files = [key for key in MD5_CHECKSUM_LOOKUP if key.startswith(model_name + "/")]
if not expected_files:
# No expected files in MD5_CHECKSUM_LOOKUP, check if the directory exists and has content
model_dir = checkpoints_dir / model_name
if not model_dir.exists() or not any(model_dir.iterdir()):
print(f"Directory for {model_name} does not exist or is empty. Download required.")
return False
else:
print(f"Directory for {model_name} exists and contains files. Assuming download is complete.")
return True
# Proceed with checksum verification for models with expected files
for key, value in MD5_CHECKSUM_LOOKUP.items():
if key.startswith(model_name + "/"):
print(f"Verifying checkpoint {key}...")
file_path = checkpoints_dir.joinpath(key)
# File must exist
if not Path(file_path).exists():
print(f"Checkpoint {key} does not exist.")
return False
# File must match given MD5 checksum
with open(file_path, "rb") as f:
file_md5 = hashlib.md5(f.read()).hexdigest()
if file_md5 != value:
print(f"MD5 checksum of checkpoint {key} does not match.")
return False
print(f"Model checkpoints for {model_name} exist with matched MD5 checksums.")
return True
def main(args):
ORG_NAME = "nvidia"
# Mapping from size argument to Hugging Face repository name
model_map = {
"7B": "Cosmos-Predict1-7B",
"14B": "Cosmos-Predict1-14B",
}
# Additional models that are always downloaded
extra_models = [
"Cosmos-Tokenize1-CV8x8x8-720p",
"google-t5/t5-11b",
]
if "Text2World" in args.model_types:
extra_models.append("Cosmos-UpsamplePrompt1-12B-Text2World")
# Add interpolator if 7B model is selected
if "7B" in args.model_sizes:
extra_models.append("Cosmos-Predict1-7B-WorldInterpolator")
# Create local checkpoints folder
checkpoints_dir = Path(args.checkpoint_dir)
checkpoints_dir.mkdir(parents=True, exist_ok=True)
download_kwargs = dict(
allow_patterns=[
"README.md",
"model.pt",
"mean_std.pt",
"image_mean_std.pt",
"config.json",
"*.jit",
"guardrail/*",
]
)
# Download the requested diffusion models
for size in args.model_sizes:
for model_type in args.model_types:
suffix = f"-{model_type}"
model_name = model_map[size] + suffix
repo_id = f"{ORG_NAME}/{model_name}"
local_dir = checkpoints_dir.joinpath(model_name)
if not get_md5_checksum(checkpoints_dir, model_name):
local_dir.mkdir(parents=True, exist_ok=True)
print(f"Downloading {repo_id} to {local_dir}...")
snapshot_download(
repo_id=repo_id, local_dir=str(local_dir), local_dir_use_symlinks=False, **download_kwargs
)
# Download the always-included models
for model_name in extra_models:
if model_name == "google-t5/t5-11b":
repo_id = model_name
else:
repo_id = f"{ORG_NAME}/{model_name}"
local_dir = checkpoints_dir.joinpath(model_name)
if not get_md5_checksum(checkpoints_dir, model_name):
local_dir.mkdir(parents=True, exist_ok=True)
print(f"Downloading {repo_id} to {local_dir}...")
# Download all files for Guardrail
snapshot_download(
repo_id=repo_id,
local_dir=str(local_dir),
local_dir_use_symlinks=False,
)
if "Video2World" in args.model_types:
# Prompt Upsampler for Cosmos-Predict1-Video2World models
convert_pixtral_checkpoint(
checkpoint_dir=args.checkpoint_dir,
checkpoint_name="Pixtral-12B",
vit_type="pixtral-12b-vit",
)
download_guardrail_checkpoints(args.checkpoint_dir)
if __name__ == "__main__":
args = parse_args()
main(args)
|