Spaces:
Build error
Build error
File size: 4,924 Bytes
b6af722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import os
import pickle
from typing import Tuple
import numpy as np
import torch
from transformers import T5EncoderModel, T5TokenizerFast
"""example command
CUDA_HOME=$CONDA_PREFIX PYTHONPATH=$(pwd) python scripts/get_t5_embeddings_from_bridge.py --dataset_path datasets/bridge
"""
def parse_args() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser(description="Compute T5 embeddings for text prompts")
parser.add_argument("--dataset_path", type=str, default="datasets/bridge", help="Root path to the dataset")
parser.add_argument(
"--subset",
type=str,
default="train",
choices=("train", "val", "test"),
help="Subset of the bridge dataset to process",
)
parser.add_argument("--max_length", type=int, default=512, help="Maximum length of the text embedding")
parser.add_argument(
"--pretrained_model_name_or_path", type=str, default="google-t5/t5-11b", help="T5 model name or the local path"
)
parser.add_argument("--cache_dir", type=str, default="checkpoints", help="Directory to cache the T5 model")
return parser.parse_args()
def init_t5(
pretrained_model_name_or_path: str = "google-t5/t5-11b", max_length: int = 512, cache_dir: str = "~/.cache"
) -> Tuple[T5TokenizerFast, T5EncoderModel]:
"""Initialize and return the T5 tokenizer and text encoder."""
tokenizer = T5TokenizerFast.from_pretrained(
pretrained_model_name_or_path, model_max_length=max_length, cache_dir=cache_dir
)
text_encoder = T5EncoderModel.from_pretrained(pretrained_model_name_or_path, cache_dir=cache_dir)
text_encoder.to("cuda")
text_encoder.eval()
return tokenizer, text_encoder
@torch.inference_mode()
def encode_for_batch(tokenizer, encoder, prompts: list[str], max_length=512) -> list:
"""
Encode a batch of text prompts to a batch of T5 embeddings.
Parameters:
tokenizer: T5 embedding tokenizer.
encoder: T5 embedding text encoder.
prompts: A batch of text prompts.
max_length: Sequence length of text embedding (defaults to 512).
"""
batch_encoding = tokenizer.batch_encode_plus(
prompts,
return_tensors="pt",
truncation=True,
padding="max_length",
max_length=max_length,
return_length=True,
return_offsets_mapping=False,
)
# We expect all the processing is done on GPU.
input_ids = batch_encoding.input_ids.cuda()
attn_mask = batch_encoding.attention_mask.cuda()
outputs = encoder(input_ids=input_ids, attention_mask=attn_mask)
encoded_text = outputs.last_hidden_state
lengths = attn_mask.sum(dim=1).cpu()
for batch_id in range(encoded_text.shape[0]):
encoded_text[batch_id][lengths[batch_id] :] = 0
encoded_text = encoded_text.cpu().numpy().astype(np.float16)
encoded_text = encoded_text[:, :max_length]
# trim zeros to save space
encoded_text = [encoded_text[batch_id][: lengths[batch_id]] for batch_id in range(encoded_text.shape[0])]
return encoded_text
def main(args) -> None:
annotation_dir = os.path.join(args.dataset_path, "annotation", args.subset)
annotation_list = [
os.path.join(annotation_dir, filename)
for filename in sorted(os.listdir(annotation_dir))
if filename.endswith(".json")
]
# Initialize T5
tokenizer, text_encoder = init_t5(cache_dir=args.cache_dir)
for annotation_filename in annotation_list:
# Save T5 embeddings as pickle file
t5_xxl_filename = os.path.join(
annotation_dir, os.path.basename(annotation_filename).replace(".json", ".pickle")
)
if os.path.exists(t5_xxl_filename):
# Skip if the file already exists
continue
with open(annotation_filename, "r") as fp:
metadata = json.load(fp)
prompt = metadata["texts"][0]
# Compute T5 embeddings
encoded_text = encode_for_batch(tokenizer, text_encoder, [prompt])
# Save T5 embeddings as pickle file
with open(t5_xxl_filename, "wb") as fp:
pickle.dump(encoded_text, fp)
if __name__ == "__main__":
args = parse_args()
main(args)
|