File size: 5,257 Bytes
b6af722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os
import pickle
from typing import Tuple

import numpy as np
import torch
from transformers import T5EncoderModel, T5TokenizerFast

"""example command
CUDA_HOME=$CONDA_PREFIX PYTHONPATH=$(pwd) python scripts/get_t5_embeddings_from_cosmos_nemo_assets.py --dataset_path datasets/cosmos_nemo_assets
"""


def parse_args() -> argparse.ArgumentParser:
    parser = argparse.ArgumentParser(description="Compute T5 embeddings for text prompts")
    parser.add_argument(
        "--dataset_path", type=str, default="datasets/cosmos_nemo_assets", help="Root path to the dataset"
    )
    parser.add_argument("--max_length", type=int, default=512, help="Maximum length of the text embedding")
    parser.add_argument(
        "--pretrained_model_name_or_path", type=str, default="google-t5/t5-11b", help="T5 model name or the local path"
    )
    parser.add_argument("--prompt", type=str, default="A video of sks teal robot.", help="Text prompt for the dataset")
    parser.add_argument("--cache_dir", type=str, default="checkpoints", help="Directory to cache the T5 model")
    return parser.parse_args()


def init_t5(
    pretrained_model_name_or_path: str = "google-t5/t5-11b", max_length: int = 512, cache_dir: str = "~/.cache"
) -> Tuple[T5TokenizerFast, T5EncoderModel]:
    """Initialize and return the T5 tokenizer and text encoder."""
    tokenizer = T5TokenizerFast.from_pretrained(
        pretrained_model_name_or_path, model_max_length=max_length, cache_dir=cache_dir
    )
    text_encoder = T5EncoderModel.from_pretrained(pretrained_model_name_or_path, cache_dir=cache_dir)
    text_encoder.to("cuda")
    text_encoder.eval()
    return tokenizer, text_encoder


@torch.inference_mode()
def encode_for_batch(tokenizer, encoder, prompts: list[str], max_length=512) -> list:
    """
    Encode a batch of text prompts to a batch of T5 embeddings.
    Parameters:
        tokenizer: T5 embedding tokenizer.
        encoder: T5 embedding text encoder.
        prompts: A batch of text prompts.
        max_length: Sequence length of text embedding (defaults to 512).
    """

    batch_encoding = tokenizer.batch_encode_plus(
        prompts,
        return_tensors="pt",
        truncation=True,
        padding="max_length",
        max_length=max_length,
        return_length=True,
        return_offsets_mapping=False,
    )

    # We expect all the processing is done on GPU.
    input_ids = batch_encoding.input_ids.cuda()
    attn_mask = batch_encoding.attention_mask.cuda()

    outputs = encoder(input_ids=input_ids, attention_mask=attn_mask)
    encoded_text = outputs.last_hidden_state

    lengths = attn_mask.sum(dim=1).cpu()
    for batch_id in range(encoded_text.shape[0]):
        encoded_text[batch_id][lengths[batch_id] :] = 0

    encoded_text = encoded_text.cpu().numpy().astype(np.float16)
    encoded_text = encoded_text[:, :max_length]

    # trim zeros to save space
    encoded_text = [encoded_text[batch_id][: lengths[batch_id]] for batch_id in range(encoded_text.shape[0])]

    return encoded_text


def main(args) -> None:
    videos_dir = os.path.join(args.dataset_path, "videos")

    # Cosmos-NeMo-Assets come with videos only. A prompt is provided as an argument.
    metas_dir = os.path.join(args.dataset_path, "metas")
    os.makedirs(metas_dir, exist_ok=True)
    metas_list = [
        os.path.join(metas_dir, filename.replace(".mp4", ".txt"))
        for filename in sorted(os.listdir(videos_dir))
        if filename.endswith(".mp4")
    ]

    # Write txt files to match other dataset formats.
    for meta_filename in metas_list:
        if not os.path.exists(meta_filename):
            with open(meta_filename, "w") as fp:
                fp.write(args.prompt)

    t5_xxl_dir = os.path.join(args.dataset_path, "t5_xxl")
    os.makedirs(t5_xxl_dir, exist_ok=True)

    # Initialize T5
    tokenizer, text_encoder = init_t5(cache_dir=args.cache_dir)

    for meta_filename in metas_list:
        t5_xxl_filename = os.path.join(t5_xxl_dir, os.path.basename(meta_filename).replace(".txt", ".pickle"))
        if os.path.exists(t5_xxl_filename):
            # Skip if the file already exists
            continue

        with open(meta_filename, "r") as fp:
            prompt = fp.read().strip()

        # Compute T5 embeddings
        encoded_text = encode_for_batch(tokenizer, text_encoder, [prompt])

        # Save T5 embeddings as pickle file
        with open(t5_xxl_filename, "wb") as fp:
            pickle.dump(encoded_text, fp)


if __name__ == "__main__":
    args = parse_args()
    main(args)