Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from hydra.core.config_store import ConfigStore | |
from megatron.core import parallel_state | |
from torch.utils.data import DataLoader, DistributedSampler | |
from cosmos_predict1.diffusion.training.callbacks.iter_speed import IterSpeed | |
from cosmos_predict1.diffusion.training.callbacks.low_precision import LowPrecisionCallback | |
from cosmos_predict1.diffusion.training.datasets.dataset_video import Dataset | |
from cosmos_predict1.diffusion.training.models.model import FSDPDiffusionModel | |
from cosmos_predict1.diffusion.training.models.model_peft import PEFTVideoDiffusionModel | |
from cosmos_predict1.diffusion.training.utils.peft.lora_config import get_fa_ca_qv_lora_config | |
from cosmos_predict1.utils import log | |
from cosmos_predict1.utils.callback import ProgressBarCallback | |
from cosmos_predict1.utils.callbacks.grad_clip import GradClip | |
from cosmos_predict1.utils.lazy_config import PLACEHOLDER | |
from cosmos_predict1.utils.lazy_config import LazyCall as L | |
from cosmos_predict1.utils.lazy_config import LazyDict | |
def get_sampler(dataset): | |
return DistributedSampler( | |
dataset, | |
num_replicas=parallel_state.get_data_parallel_world_size(), | |
rank=parallel_state.get_data_parallel_rank(), | |
shuffle=True, | |
seed=0, | |
) | |
cs = ConfigStore.instance() | |
n_length = 15 | |
num_frames = 8 * n_length + 1 # 121 | |
# HDVILA example | |
example_video_dataset_hdvila = L(Dataset)( | |
dataset_dir="datasets/hdvila", | |
sequence_interval=1, | |
num_frames=num_frames, | |
video_size=(720, 1280), | |
start_frame_interval=1, | |
) | |
dataloader_train_hdvila = L(DataLoader)( | |
dataset=example_video_dataset_hdvila, | |
sampler=L(get_sampler)(dataset=example_video_dataset_hdvila), | |
batch_size=1, | |
drop_last=True, | |
num_workers=8, | |
pin_memory=True, | |
) | |
dataloader_val_hdvila = L(DataLoader)( | |
dataset=example_video_dataset_hdvila, | |
sampler=L(get_sampler)(dataset=example_video_dataset_hdvila), | |
batch_size=1, | |
drop_last=True, | |
num_workers=8, | |
pin_memory=True, | |
) | |
# Cosmos-NeMo-Assets example | |
example_video_dataset_cosmos_nemo_assets = L(Dataset)( | |
dataset_dir="datasets/cosmos_nemo_assets", | |
sequence_interval=1, | |
num_frames=num_frames, | |
video_size=(720, 1280), | |
start_frame_interval=1, | |
) | |
dataloader_train_cosmos_nemo_assets = L(DataLoader)( | |
dataset=example_video_dataset_cosmos_nemo_assets, | |
sampler=L(get_sampler)(dataset=example_video_dataset_cosmos_nemo_assets), | |
batch_size=1, | |
drop_last=True, | |
num_workers=8, | |
pin_memory=True, | |
) | |
dataloader_val_cosmos_nemo_assets = L(DataLoader)( | |
dataset=example_video_dataset_cosmos_nemo_assets, | |
sampler=L(get_sampler)(dataset=example_video_dataset_cosmos_nemo_assets), | |
batch_size=1, | |
drop_last=True, | |
num_workers=8, | |
pin_memory=True, | |
) | |
# Cosmos-NeMo-Assets 480x848 example for lora | |
example_video_dataset_cosmos_nemo_assets_480_848 = L(Dataset)( | |
dataset_dir="datasets/cosmos_nemo_assets", | |
sequence_interval=1, | |
num_frames=num_frames, | |
video_size=(480, 848), | |
start_frame_interval=1, | |
) | |
dataloader_train_cosmos_nemo_assets_480_848 = L(DataLoader)( | |
dataset=example_video_dataset_cosmos_nemo_assets_480_848, | |
sampler=L(get_sampler)(dataset=example_video_dataset_cosmos_nemo_assets_480_848), | |
batch_size=1, | |
drop_last=True, | |
num_workers=8, | |
pin_memory=True, | |
) | |
dataloader_val_cosmos_nemo_assets_480_848 = L(DataLoader)( | |
dataset=example_video_dataset_cosmos_nemo_assets_480_848, | |
sampler=L(get_sampler)(dataset=example_video_dataset_cosmos_nemo_assets_480_848), | |
batch_size=1, | |
drop_last=True, | |
num_workers=8, | |
pin_memory=True, | |
) | |
# Cosmos-NeMo-Assets examples with more affordable GPUs setup (4 GPUs or 40GB VRAM) | |
n_length_4gpu_80gb = 15 | |
num_frames_4gpu_80gb = 8 * n_length_4gpu_80gb + 1 # 121 | |
example_video_dataset_cosmos_nemo_assets_4gpu_80gb = L(Dataset)( | |
dataset_dir="datasets/cosmos_nemo_assets", | |
sequence_interval=1, | |
num_frames=num_frames_4gpu_80gb, | |
video_size=(384, 384), # a low-res example for lower VRAM utilization without considering the content aspect ratio. | |
start_frame_interval=1, | |
) | |
dataloader_train_cosmos_nemo_assets_4gpu_80gb = L(DataLoader)( | |
dataset=example_video_dataset_cosmos_nemo_assets_4gpu_80gb, | |
sampler=L(get_sampler)(dataset=example_video_dataset_cosmos_nemo_assets_4gpu_80gb), | |
batch_size=1, | |
drop_last=True, | |
num_workers=8, | |
pin_memory=True, | |
) | |
dataloader_val_cosmos_nemo_assets_4gpu_80gb = L(DataLoader)( | |
dataset=example_video_dataset_cosmos_nemo_assets_4gpu_80gb, | |
sampler=L(get_sampler)(dataset=example_video_dataset_cosmos_nemo_assets_4gpu_80gb), | |
batch_size=1, | |
drop_last=True, | |
num_workers=8, | |
pin_memory=True, | |
) | |
n_length_8gpu_40gb = 4 | |
num_frames_8gpu_40gb = 8 * n_length_8gpu_40gb + 1 # 33 | |
example_video_dataset_cosmos_nemo_assets_8gpu_40gb = L(Dataset)( | |
dataset_dir="datasets/cosmos_nemo_assets", | |
sequence_interval=1, | |
num_frames=num_frames_8gpu_40gb, | |
video_size=(384, 384), # a low-res example for lower VRAM utilization without considering aspect ratio. | |
start_frame_interval=1, | |
) | |
dataloader_train_cosmos_nemo_assets_8gpu_40gb = L(DataLoader)( | |
dataset=example_video_dataset_cosmos_nemo_assets_8gpu_40gb, | |
sampler=L(get_sampler)(dataset=example_video_dataset_cosmos_nemo_assets_8gpu_40gb), | |
batch_size=1, | |
drop_last=True, | |
num_workers=8, | |
pin_memory=True, | |
) | |
dataloader_val_cosmos_nemo_assets_8gpu_40gb = L(DataLoader)( | |
dataset=example_video_dataset_cosmos_nemo_assets_8gpu_40gb, | |
sampler=L(get_sampler)(dataset=example_video_dataset_cosmos_nemo_assets_8gpu_40gb), | |
batch_size=1, | |
drop_last=True, | |
num_workers=8, | |
pin_memory=True, | |
) | |
n_length_4gpu_40gb = 2 | |
num_frames_4gpu_40gb = 8 * n_length_4gpu_40gb + 1 # 17 | |
example_video_dataset_cosmos_nemo_assets_4gpu_40gb = L(Dataset)( | |
dataset_dir="datasets/cosmos_nemo_assets", | |
sequence_interval=1, | |
num_frames=num_frames_4gpu_40gb, | |
video_size=(384, 384), # a low-res example for lower VRAM utilization without considering aspect ratio. | |
start_frame_interval=1, | |
) | |
dataloader_train_cosmos_nemo_assets_4gpu_40gb = L(DataLoader)( | |
dataset=example_video_dataset_cosmos_nemo_assets_4gpu_40gb, | |
sampler=L(get_sampler)(dataset=example_video_dataset_cosmos_nemo_assets_4gpu_40gb), | |
batch_size=1, | |
drop_last=True, | |
num_workers=8, | |
pin_memory=True, | |
) | |
dataloader_val_cosmos_nemo_assets_4gpu_40gb = L(DataLoader)( | |
dataset=example_video_dataset_cosmos_nemo_assets_4gpu_40gb, | |
sampler=L(get_sampler)(dataset=example_video_dataset_cosmos_nemo_assets_4gpu_40gb), | |
batch_size=1, | |
drop_last=True, | |
num_workers=8, | |
pin_memory=True, | |
) | |
text2world_7b_example_hdvila = LazyDict( | |
dict( | |
defaults=[ | |
{"override /net": "faditv2_7b"}, | |
{"override /ckpt_klass": "fsdp"}, | |
{"override /checkpoint": "local"}, | |
{"override /vae": "cosmos_diffusion_tokenizer_comp8x8x8"}, | |
{"override /conditioner": "add_fps_image_size_padding_mask"}, | |
"_self_", | |
], | |
job=dict( | |
project="posttraining", | |
group="diffusion_text2world", | |
name="text2world_7b_example_hdvila", | |
), | |
optimizer=dict( | |
lr=2 ** (-14.3), # 2**(-14.3) approx 5e-5 | |
weight_decay=0.1, | |
betas=[0.9, 0.99], | |
eps=1e-10, | |
), | |
checkpoint=dict( | |
save_iter=200, | |
broadcast_via_filesystem=False, | |
load_path="checkpoints/Cosmos-Predict1-7B-Text2World/model.pt", | |
load_training_state=False, | |
strict_resume=False, | |
keys_not_to_resume=[], | |
), | |
trainer=dict( | |
max_iter=2000, | |
distributed_parallelism="fsdp", | |
logging_iter=200, | |
callbacks=dict( | |
grad_clip=L(GradClip)( | |
model_key="model", | |
fsdp_enabled=True, | |
), | |
low_prec=L(LowPrecisionCallback)(config=PLACEHOLDER, trainer=PLACEHOLDER, update_iter=1), | |
iter_speed=L(IterSpeed)( | |
every_n=10, | |
hit_thres=0, | |
), | |
progress_bar=L(ProgressBarCallback)(), | |
), | |
grad_accum_iter=2, | |
), | |
model_parallel=dict( | |
sequence_parallel=False, | |
tensor_model_parallel_size=1, | |
context_parallel_size=1, | |
), | |
model=dict( | |
latent_shape=[ | |
16, # Latent channel dim | |
16, # Latent temporal dim | |
88, # Latent height dim | |
160, # Latent width dim | |
], | |
loss_reduce="mean", | |
loss_scale=10.0, | |
ema=dict( | |
enabled=True, | |
), | |
fsdp_enabled=True, | |
fsdp=dict( | |
policy="block", | |
checkpoint=True, | |
min_num_params=1024, | |
sharding_group_size=32, | |
sharding_strategy="hybrid", | |
), | |
net=dict( | |
in_channels=16, | |
rope_h_extrapolation_ratio=1, | |
rope_w_extrapolation_ratio=1, | |
rope_t_extrapolation_ratio=2, | |
), | |
vae=dict(pixel_chunk_duration=num_frames), | |
conditioner=dict(text=dict(dropout_rate=0.0)), | |
), | |
model_obj=L(FSDPDiffusionModel)( | |
config=PLACEHOLDER, | |
fsdp_checkpointer=PLACEHOLDER, | |
), | |
# warming up for first 2500 steps | |
scheduler=dict( | |
warm_up_steps=[2500], | |
cycle_lengths=[10000000000000], | |
f_start=[1.0e-6], | |
f_max=[1.0], | |
f_min=[1.0], | |
), | |
dataloader_train=dataloader_train_hdvila, | |
dataloader_val=dataloader_val_hdvila, | |
) | |
) | |
text2world_14b_example_hdvila = LazyDict( | |
dict( | |
defaults=[ | |
{"override /net": "faditv2_14b"}, | |
{"override /ckpt_klass": "fsdp"}, | |
{"override /checkpoint": "local"}, | |
{"override /vae": "cosmos_diffusion_tokenizer_comp8x8x8"}, | |
{"override /conditioner": "add_fps_image_size_padding_mask"}, | |
"_self_", | |
], | |
job=dict( | |
project="posttraining", | |
group="diffusion_text2world", | |
name="text2world_14b_example_hdvila", | |
), | |
optimizer=dict( | |
lr=2 ** (-16), | |
weight_decay=0.2, | |
betas=[0.9, 0.99], | |
eps=1e-11, | |
), | |
checkpoint=dict( | |
save_iter=200, | |
broadcast_via_filesystem=False, | |
load_path="checkpoints/Cosmos-Predict1-14B-Text2World/model.pt", | |
load_training_state=False, | |
strict_resume=False, | |
keys_not_to_resume=[], | |
), | |
trainer=dict( | |
max_iter=2000, | |
distributed_parallelism="fsdp", | |
logging_iter=200, | |
callbacks=dict( | |
grad_clip=L(GradClip)( | |
model_key="model", | |
fsdp_enabled=True, | |
), | |
low_prec=L(LowPrecisionCallback)(config=PLACEHOLDER, trainer=PLACEHOLDER, update_iter=1), | |
iter_speed=L(IterSpeed)( | |
every_n=10, | |
hit_thres=0, | |
), | |
progress_bar=L(ProgressBarCallback)(), | |
), | |
), | |
model_parallel=dict( | |
sequence_parallel=False, | |
tensor_model_parallel_size=1, | |
context_parallel_size=8, | |
), | |
model=dict( | |
latent_shape=[ | |
16, # Latent channel dim | |
16, # Latent temporal dim | |
88, # Latent height dim | |
160, # Latent width dim | |
], | |
loss_reduce="mean", | |
loss_scale=10.0, | |
ema=dict( | |
enabled=True, | |
num=1, | |
), | |
fsdp_enabled=True, | |
fsdp=dict( | |
policy="block", | |
checkpoint=False, | |
min_num_params=1024, | |
sharding_group_size=64, | |
sharding_strategy="hybrid", | |
), | |
net=dict( | |
in_channels=16, | |
rope_h_extrapolation_ratio=2.0, | |
rope_t_extrapolation_ratio=2.0, | |
rope_w_extrapolation_ratio=2.0, | |
extra_h_extrapolation_ratio=2.0, | |
extra_t_extrapolation_ratio=2.0, | |
extra_w_extrapolation_ratio=2.0, | |
use_memory_save=True, | |
), | |
adjust_video_noise=True, | |
vae=dict(pixel_chunk_duration=num_frames), | |
conditioner=dict(text=dict(dropout_rate=0.0)), | |
), | |
model_obj=L(FSDPDiffusionModel)( | |
config=PLACEHOLDER, | |
fsdp_checkpointer=PLACEHOLDER, | |
), | |
# warming up for first 2500 steps | |
scheduler=dict( | |
warm_up_steps=[2500], | |
cycle_lengths=[90_000], | |
f_start=[1.0e-6], | |
f_max=[1.0], | |
f_min=[1e-1], | |
), | |
dataloader_train=dataloader_train_hdvila, | |
dataloader_val=dataloader_val_hdvila, | |
) | |
) | |
text2world_7b_example_cosmos_nemo_assets = LazyDict( | |
dict( | |
defaults=[ | |
{"override /net": "faditv2_7b"}, | |
{"override /ckpt_klass": "fsdp"}, | |
{"override /checkpoint": "local"}, | |
{"override /vae": "cosmos_diffusion_tokenizer_comp8x8x8"}, | |
{"override /conditioner": "add_fps_image_size_padding_mask"}, | |
"_self_", | |
], | |
job=dict( | |
project="posttraining", | |
group="diffusion_text2world", | |
name="text2world_7b_example_cosmos_nemo_assets", | |
), | |
optimizer=dict( | |
lr=2 ** (-14.3), # 2**(-14.3) approx 5e-5 | |
weight_decay=0.1, | |
betas=[0.9, 0.99], | |
eps=1e-10, | |
), | |
checkpoint=dict( | |
save_iter=200, | |
broadcast_via_filesystem=False, | |
load_path="checkpoints/Cosmos-Predict1-7B-Text2World/model.pt", | |
load_training_state=False, | |
strict_resume=False, | |
keys_not_to_resume=[], | |
), | |
trainer=dict( | |
max_iter=2000, | |
distributed_parallelism="fsdp", | |
logging_iter=200, | |
callbacks=dict( | |
grad_clip=L(GradClip)( | |
model_key="model", | |
fsdp_enabled=True, | |
), | |
low_prec=L(LowPrecisionCallback)(config=PLACEHOLDER, trainer=PLACEHOLDER, update_iter=1), | |
iter_speed=L(IterSpeed)( | |
every_n=10, | |
hit_thres=0, | |
), | |
progress_bar=L(ProgressBarCallback)(), | |
), | |
), | |
model_parallel=dict( | |
sequence_parallel=False, | |
tensor_model_parallel_size=1, | |
context_parallel_size=1, | |
), | |
model=dict( | |
latent_shape=[ | |
16, # Latent channel dim | |
16, # Latent temporal dim | |
88, # Latent height dim | |
160, # Latent width dim | |
], | |
loss_reduce="mean", | |
ema=dict( | |
enabled=True, | |
), | |
fsdp_enabled=True, | |
fsdp=dict( | |
policy="block", | |
checkpoint=True, | |
min_num_params=1024, | |
sharding_group_size=32, | |
sharding_strategy="hybrid", | |
), | |
net=dict( | |
in_channels=16, | |
rope_h_extrapolation_ratio=1, | |
rope_w_extrapolation_ratio=1, | |
rope_t_extrapolation_ratio=2, | |
), | |
vae=dict(pixel_chunk_duration=num_frames), | |
conditioner=dict(text=dict(dropout_rate=0.0)), | |
), | |
model_obj=L(FSDPDiffusionModel)( | |
config=PLACEHOLDER, | |
fsdp_checkpointer=PLACEHOLDER, | |
), | |
# warming up for first 2500 steps | |
scheduler=dict( | |
warm_up_steps=[2500], | |
cycle_lengths=[10000000000000], | |
f_start=[1.0e-6], | |
f_max=[1.0], | |
f_min=[1.0], | |
), | |
dataloader_train=dataloader_train_cosmos_nemo_assets, | |
dataloader_val=dataloader_val_cosmos_nemo_assets, | |
) | |
) | |
text2world_7b_example_cosmos_nemo_assets_4gpu_80gb = LazyDict( | |
dict( | |
defaults=[ | |
{"override /net": "faditv2_7b"}, | |
{"override /ckpt_klass": "fsdp"}, | |
{"override /checkpoint": "local"}, | |
{"override /vae": "cosmos_diffusion_tokenizer_comp8x8x8"}, | |
{"override /conditioner": "add_fps_image_size_padding_mask"}, | |
"_self_", | |
], | |
job=dict( | |
project="posttraining", | |
group="diffusion_text2world", | |
name="text2world_7b_example_cosmos_nemo_assets_4gpu_80gb", | |
), | |
optimizer=dict( | |
lr=2 ** (-14.3), # 2**(-14.3) approx 5e-5 | |
weight_decay=0.1, | |
betas=[0.9, 0.99], | |
eps=1e-10, | |
), | |
checkpoint=dict( | |
save_iter=200, | |
broadcast_via_filesystem=False, | |
load_path="checkpoints/Cosmos-Predict1-7B-Text2World/model.pt", | |
load_training_state=False, | |
strict_resume=False, | |
keys_not_to_resume=[], | |
), | |
trainer=dict( | |
max_iter=2000, | |
distributed_parallelism="fsdp", | |
logging_iter=200, | |
callbacks=dict( | |
grad_clip=L(GradClip)( | |
model_key="model", | |
fsdp_enabled=True, | |
), | |
low_prec=L(LowPrecisionCallback)(config=PLACEHOLDER, trainer=PLACEHOLDER, update_iter=1), | |
iter_speed=L(IterSpeed)( | |
every_n=10, | |
hit_thres=0, | |
), | |
progress_bar=L(ProgressBarCallback)(), | |
), | |
), | |
model_parallel=dict( | |
sequence_parallel=False, | |
tensor_model_parallel_size=1, | |
context_parallel_size=1, | |
), | |
model=dict( | |
latent_shape=[ | |
16, # Latent channel dim | |
16, # Latent temporal dim | |
48, # Latent height dim | |
48, # Latent width dim | |
], | |
loss_reduce="mean", | |
ema=dict( | |
enabled=True, | |
), | |
fsdp_enabled=True, | |
fsdp=dict( | |
policy="block", | |
checkpoint=True, | |
min_num_params=1024, | |
sharding_group_size=32, | |
sharding_strategy="hybrid", | |
), | |
net=dict( | |
in_channels=16, | |
rope_h_extrapolation_ratio=1, | |
rope_w_extrapolation_ratio=1, | |
rope_t_extrapolation_ratio=2, | |
use_memory_save=False, | |
), | |
vae=dict( | |
pixel_chunk_duration=num_frames_4gpu_80gb, | |
spatial_resolution="384", | |
), | |
conditioner=dict(text=dict(dropout_rate=0.0)), | |
), | |
model_obj=L(FSDPDiffusionModel)( | |
config=PLACEHOLDER, | |
fsdp_checkpointer=PLACEHOLDER, | |
), | |
# warming up for first 2500 steps | |
scheduler=dict( | |
warm_up_steps=[2500], | |
cycle_lengths=[10000000000000], | |
f_start=[1.0e-6], | |
f_max=[1.0], | |
f_min=[1.0], | |
), | |
dataloader_train=dataloader_train_cosmos_nemo_assets_4gpu_80gb, | |
dataloader_val=dataloader_val_cosmos_nemo_assets_4gpu_80gb, | |
) | |
) | |
text2world_7b_example_cosmos_nemo_assets_8gpu_40gb = LazyDict( | |
dict( | |
defaults=[ | |
{"override /net": "faditv2_7b"}, | |
{"override /ckpt_klass": "fsdp"}, | |
{"override /checkpoint": "local"}, | |
{"override /vae": "cosmos_diffusion_tokenizer_comp8x8x8"}, | |
{"override /conditioner": "add_fps_image_size_padding_mask"}, | |
"_self_", | |
], | |
job=dict( | |
project="posttraining", | |
group="diffusion_text2world", | |
name="text2world_7b_example_cosmos_nemo_assets_8gpu_40gb", | |
), | |
optimizer=dict( | |
lr=2 ** (-14.3), # 2**(-14.3) approx 5e-5 | |
weight_decay=0.1, | |
betas=[0.9, 0.99], | |
eps=1e-10, | |
), | |
checkpoint=dict( | |
save_iter=200, | |
broadcast_via_filesystem=False, | |
load_path="checkpoints/Cosmos-Predict1-7B-Text2World/model.pt", | |
load_training_state=False, | |
strict_resume=False, | |
keys_not_to_resume=[], | |
async_saving=False, # set to False to save memory | |
), | |
trainer=dict( | |
max_iter=2000, | |
distributed_parallelism="fsdp", | |
logging_iter=200, | |
callbacks=dict( | |
grad_clip=L(GradClip)( | |
model_key="model", | |
fsdp_enabled=True, | |
), | |
low_prec=L(LowPrecisionCallback)(config=PLACEHOLDER, trainer=PLACEHOLDER, update_iter=1), | |
iter_speed=L(IterSpeed)( | |
every_n=10, | |
hit_thres=0, | |
), | |
progress_bar=L(ProgressBarCallback)(), | |
), | |
), | |
model_parallel=dict( | |
sequence_parallel=False, | |
tensor_model_parallel_size=1, | |
context_parallel_size=1, | |
), | |
model=dict( | |
latent_shape=[ | |
16, # Latent channel dim | |
16, # Latent temporal dim | |
48, # Latent height dim | |
48, # Latent width dim | |
], | |
loss_reduce="mean", | |
ema=dict( | |
enabled=False, # turn off to save memory | |
), | |
fsdp_enabled=True, | |
fsdp=dict( | |
policy="block", | |
checkpoint=True, | |
min_num_params=1024, | |
sharding_group_size=32, | |
sharding_strategy="hybrid", | |
), | |
net=dict( | |
in_channels=16, | |
rope_h_extrapolation_ratio=1, | |
rope_w_extrapolation_ratio=1, | |
rope_t_extrapolation_ratio=2, | |
use_memory_save=False, | |
), | |
vae=dict( | |
pixel_chunk_duration=num_frames_8gpu_40gb, | |
spatial_resolution="384", | |
), | |
conditioner=dict(text=dict(dropout_rate=0.0)), | |
), | |
model_obj=L(FSDPDiffusionModel)( | |
config=PLACEHOLDER, | |
fsdp_checkpointer=PLACEHOLDER, | |
), | |
# warming up for first 2500 steps | |
scheduler=dict( | |
warm_up_steps=[2500], | |
cycle_lengths=[10000000000000], | |
f_start=[1.0e-6], | |
f_max=[1.0], | |
f_min=[1.0], | |
), | |
dataloader_train=dataloader_train_cosmos_nemo_assets_8gpu_40gb, | |
dataloader_val=dataloader_val_cosmos_nemo_assets_8gpu_40gb, | |
) | |
) | |
text2world_7b_example_cosmos_nemo_assets_4gpu_40gb = LazyDict( | |
dict( | |
defaults=[ | |
{"override /net": "faditv2_7b"}, | |
{"override /ckpt_klass": "fsdp"}, | |
{"override /checkpoint": "local"}, | |
{"override /vae": "cosmos_diffusion_tokenizer_comp8x8x8"}, | |
{"override /conditioner": "add_fps_image_size_padding_mask"}, | |
"_self_", | |
], | |
job=dict( | |
project="posttraining", | |
group="diffusion_text2world", | |
name="text2world_7b_example_cosmos_nemo_assets_4gpu_40gb", | |
), | |
optimizer=dict( | |
lr=2 ** (-14.3), # 2**(-14.3) approx 5e-5 | |
weight_decay=0.1, | |
betas=[0.9, 0.99], | |
eps=1e-10, | |
), | |
checkpoint=dict( | |
save_iter=200, | |
broadcast_via_filesystem=False, | |
load_path="checkpoints/Cosmos-Predict1-7B-Text2World/model.pt", | |
load_training_state=False, | |
strict_resume=False, | |
keys_not_to_resume=[], | |
async_saving=False, # set to False to save memory | |
), | |
trainer=dict( | |
max_iter=2000, | |
distributed_parallelism="fsdp", | |
logging_iter=200, | |
callbacks=dict( | |
grad_clip=L(GradClip)( | |
model_key="model", | |
fsdp_enabled=True, | |
), | |
low_prec=L(LowPrecisionCallback)(config=PLACEHOLDER, trainer=PLACEHOLDER, update_iter=1), | |
iter_speed=L(IterSpeed)( | |
every_n=10, | |
hit_thres=0, | |
), | |
progress_bar=L(ProgressBarCallback)(), | |
), | |
), | |
model_parallel=dict( | |
sequence_parallel=False, | |
tensor_model_parallel_size=1, | |
context_parallel_size=1, | |
), | |
model=dict( | |
latent_shape=[ | |
16, # Latent channel dim | |
16, # Latent temporal dim | |
48, # Latent height dim | |
48, # Latent width dim | |
], | |
loss_reduce="mean", | |
ema=dict( | |
enabled=False, # turn off to save memory | |
), | |
fsdp_enabled=True, | |
fsdp=dict( | |
policy="block", | |
checkpoint=True, | |
min_num_params=1024, | |
sharding_group_size=32, | |
sharding_strategy="hybrid", | |
), | |
net=dict( | |
in_channels=16, | |
rope_h_extrapolation_ratio=1, | |
rope_w_extrapolation_ratio=1, | |
rope_t_extrapolation_ratio=2, | |
use_memory_save=False, | |
), | |
vae=dict( | |
pixel_chunk_duration=num_frames_4gpu_40gb, | |
spatial_resolution="384", | |
), | |
conditioner=dict(text=dict(dropout_rate=0.0)), | |
), | |
model_obj=L(FSDPDiffusionModel)( | |
config=PLACEHOLDER, | |
fsdp_checkpointer=PLACEHOLDER, | |
), | |
# warming up for first 2500 steps | |
scheduler=dict( | |
warm_up_steps=[2500], | |
cycle_lengths=[10000000000000], | |
f_start=[1.0e-6], | |
f_max=[1.0], | |
f_min=[1.0], | |
), | |
dataloader_train=dataloader_train_cosmos_nemo_assets_4gpu_40gb, | |
dataloader_val=dataloader_val_cosmos_nemo_assets_4gpu_40gb, | |
) | |
) | |
text2world_14b_example_cosmos_nemo_assets = LazyDict( | |
dict( | |
defaults=[ | |
{"override /net": "faditv2_14b"}, | |
{"override /ckpt_klass": "fsdp"}, | |
{"override /checkpoint": "local"}, | |
{"override /vae": "cosmos_diffusion_tokenizer_comp8x8x8"}, | |
{"override /conditioner": "add_fps_image_size_padding_mask"}, | |
"_self_", | |
], | |
job=dict( | |
project="posttraining", | |
group="diffusion_text2world", | |
name="text2world_14b_example_cosmos_nemo_assets", | |
), | |
optimizer=dict( | |
lr=2 ** (-16), | |
weight_decay=0.2, | |
betas=[0.9, 0.99], | |
eps=1e-11, | |
), | |
checkpoint=dict( | |
save_iter=200, | |
broadcast_via_filesystem=False, | |
load_path="checkpoints/Cosmos-Predict1-14B-Text2World/model.pt", | |
load_training_state=False, | |
strict_resume=False, | |
keys_not_to_resume=[], | |
), | |
trainer=dict( | |
max_iter=2000, | |
distributed_parallelism="fsdp", | |
logging_iter=200, | |
callbacks=dict( | |
grad_clip=L(GradClip)( | |
model_key="model", | |
fsdp_enabled=True, | |
), | |
low_prec=L(LowPrecisionCallback)(config=PLACEHOLDER, trainer=PLACEHOLDER, update_iter=1), | |
iter_speed=L(IterSpeed)( | |
every_n=10, | |
hit_thres=0, | |
), | |
progress_bar=L(ProgressBarCallback)(), | |
), | |
), | |
model_parallel=dict( | |
sequence_parallel=False, | |
tensor_model_parallel_size=1, | |
context_parallel_size=16, | |
), | |
model=dict( | |
latent_shape=[ | |
16, # Latent channel dim | |
16, # Latent temporal dim | |
88, # Latent height dim | |
160, # Latent width dim | |
], | |
loss_reduce="mean", | |
loss_scale=10.0, | |
ema=dict( | |
enabled=True, | |
num=1, | |
), | |
fsdp_enabled=True, | |
fsdp=dict( | |
policy="block", | |
checkpoint=False, | |
min_num_params=1024, | |
sharding_group_size=64, | |
sharding_strategy="hybrid", | |
), | |
net=dict( | |
in_channels=16, | |
rope_h_extrapolation_ratio=2.0, | |
rope_t_extrapolation_ratio=2.0, | |
rope_w_extrapolation_ratio=2.0, | |
extra_h_extrapolation_ratio=2.0, | |
extra_t_extrapolation_ratio=2.0, | |
extra_w_extrapolation_ratio=2.0, | |
use_memory_save=True, | |
), | |
adjust_video_noise=True, | |
vae=dict(pixel_chunk_duration=num_frames), | |
conditioner=dict(text=dict(dropout_rate=0.0)), | |
), | |
model_obj=L(FSDPDiffusionModel)( | |
config=PLACEHOLDER, | |
fsdp_checkpointer=PLACEHOLDER, | |
), | |
# warming up for first 2500 steps | |
scheduler=dict( | |
warm_up_steps=[2500], | |
cycle_lengths=[90_000], | |
f_start=[1.0e-6], | |
f_max=[1.0], | |
f_min=[1e-1], | |
), | |
dataloader_train=dataloader_train_cosmos_nemo_assets, | |
dataloader_val=dataloader_val_cosmos_nemo_assets, | |
) | |
) | |
text2world_7b_lora_example_cosmos_nemo_assets = LazyDict( | |
dict( | |
defaults=[ | |
{"override /net": "faditv2_7b"}, | |
{"override /ckpt_klass": "peft"}, | |
{"override /checkpoint": "local"}, | |
{"override /vae": "cosmos_diffusion_tokenizer_comp8x8x8"}, | |
{"override /conditioner": "add_fps_image_size_padding_mask"}, | |
"_self_", | |
], | |
job=dict( | |
project="posttraining", | |
group="diffusion_text2world", | |
name="text2world_7b_lora_example_cosmos_nemo_assets", | |
), | |
optimizer=dict( | |
lr=1e-4, | |
weight_decay=0.1, | |
betas=[0.9, 0.99], | |
eps=1e-10, | |
), | |
checkpoint=dict( | |
save_iter=1000, | |
broadcast_via_filesystem=True, | |
load_path="checkpoints/Cosmos-Predict1-7B-Text2World/model.pt", | |
load_training_state=False, | |
strict_resume=False, | |
keys_not_to_resume=[], | |
async_saving=False, | |
), | |
trainer=dict( | |
max_iter=5000, | |
distributed_parallelism="ddp", | |
logging_iter=200, | |
callbacks=dict( | |
grad_clip=L(GradClip)( | |
model_key="model", | |
fsdp_enabled=False, | |
), | |
low_prec=L(LowPrecisionCallback)(config=PLACEHOLDER, trainer=PLACEHOLDER, update_iter=1), | |
iter_speed=L(IterSpeed)( | |
every_n=10, | |
hit_thres=0, | |
), | |
progress_bar=L(ProgressBarCallback)(), | |
), | |
), | |
model_parallel=dict( | |
sequence_parallel=False, | |
tensor_model_parallel_size=1, | |
context_parallel_size=4, | |
), | |
model=dict( | |
peft_control=get_fa_ca_qv_lora_config(first_nblocks=28, rank=8, scale=1), | |
# Use 16x16x32x40 latent shape for training | |
latent_shape=[ | |
16, # Latent channel dim | |
16, # Latent temporal dim | |
88, # Latent height dim | |
160, # Latent width dim | |
], | |
loss_reduce="mean", | |
ema=dict( | |
enabled=True, | |
), | |
fsdp_enabled=False, | |
net=dict( | |
in_channels=16, | |
rope_h_extrapolation_ratio=1, | |
rope_w_extrapolation_ratio=1, | |
rope_t_extrapolation_ratio=2, | |
), | |
vae=dict(pixel_chunk_duration=num_frames), | |
), | |
model_obj=L(PEFTVideoDiffusionModel)( | |
config=PLACEHOLDER, | |
fsdp_checkpointer=PLACEHOLDER, | |
), | |
scheduler=dict( | |
warm_up_steps=[0], | |
), | |
dataloader_train=dataloader_train_cosmos_nemo_assets_480_848, | |
dataloader_val=dataloader_val_cosmos_nemo_assets_480_848, | |
) | |
) | |
def register_experiments(cs: ConfigStore) -> None: | |
# Register the experiments | |
for _item in [ | |
text2world_7b_example_hdvila, | |
text2world_14b_example_hdvila, | |
text2world_7b_example_cosmos_nemo_assets, | |
text2world_14b_example_cosmos_nemo_assets, | |
text2world_7b_example_cosmos_nemo_assets_4gpu_80gb, | |
text2world_7b_example_cosmos_nemo_assets_8gpu_40gb, | |
text2world_7b_example_cosmos_nemo_assets_4gpu_40gb, | |
text2world_7b_lora_example_cosmos_nemo_assets, | |
]: | |
experiment_name = _item["job"]["name"] | |
log.info(f"Registering experiment: {experiment_name}") | |
cs.store( | |
group="experiment", | |
package="_global_", | |
name=experiment_name, | |
node=_item, | |
) | |