Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from megatron.core import parallel_state | |
from torch.utils.data import DataLoader, DistributedSampler | |
from cosmos_predict1.autoregressive.configs.base.dataset import VideoDatasetConfig | |
from cosmos_predict1.autoregressive.datasets.video_dataset import VideoDataset | |
from cosmos_predict1.utils import log | |
from cosmos_predict1.utils.lazy_config import LazyCall as L | |
DATALOADER_OPTIONS = {} | |
def get_sampler(dataset): | |
return DistributedSampler( | |
dataset, | |
num_replicas=parallel_state.get_data_parallel_world_size(), | |
rank=parallel_state.get_data_parallel_rank(), | |
shuffle=True, | |
seed=0, | |
) | |
def dataloader_register(key): | |
log.info(f"registering dataloader {key}...") | |
def decorator(func): | |
DATALOADER_OPTIONS[key] = func | |
return func | |
return decorator | |
def get_tealrobot_video( | |
batch_size: int = 1, | |
dataset_dir: str = "datasets/cosmos_nemo_assets/videos/", | |
sequence_interval: int = 1, | |
num_frames: int = 33, | |
video_size: list[int, int] = [640, 848], | |
start_frame_interval: int = 1, | |
): | |
dataset = L(VideoDataset)( | |
config=VideoDatasetConfig( | |
dataset_dir=dataset_dir, | |
sequence_interval=sequence_interval, | |
num_frames=num_frames, | |
video_size=video_size, | |
start_frame_interval=start_frame_interval, | |
) | |
) | |
return L(DataLoader)( | |
dataset=dataset, | |
sampler=L(get_sampler)(dataset=dataset), | |
batch_size=batch_size, | |
drop_last=True, | |
pin_memory=True, | |
num_workers=8, | |
) | |