Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Optional | |
import attrs | |
from cosmos_predict1.autoregressive.configs.base.tokenizer import TokenizerConfig | |
from cosmos_predict1.utils import config | |
_ACTION_DIM = 8 | |
from cosmos_predict1.utils.lazy_config import LazyDict | |
class ModelConfig: | |
""" | |
A class to hold model configuration arguments. | |
Args: | |
dim (int): The dimensionality of the input and output of each transformer block. | |
n_layers (int): Number of layers in the transformer. | |
n_heads (int): Number of attention heads. | |
n_kv_heads (Optional[int]): Number of key-value heads. If None, defaults to n_heads. Note: this is equivalent to | |
`num_gqa_groups` in TransformerEngine, where GQA means Grouped Query Attention. | |
head_dim (Optional[int]): Dimensionality of each head. If None, defaults to dim // n_heads. | |
vocab_size (int): Vocabulary size. | |
ffn_hidden_size (int): Hidden size for feedforward network. | |
norm_eps (float): Epsilon value for normalization. | |
rope_theta (float): Theta value for rotary positional embeddings. | |
apply_abs_pos_emb (bool): Whether to apply absolute position embeddings. | |
max_batch_size (int): Maximum batch size for inference. | |
max_seq_len (int): Maximum sequence length for input text. | |
fuse_qkv (bool): Whether to fuse QKV in attention. Defaults to True. | |
causal_mask (bool): Whether to use causal mask. Defaults to True. | |
norm_type (str): Type of normalization layer. Choices: "rmsnorm", "fused_rmsnorm", "layernorm", "np_layernorm". | |
precision (str): Data type for the model. | |
use_qk_normalization (bool): Whether to enable QK normalization. | |
tensor_model_parallel_size (int): Tensor model parallel size. Defaults to 1. | |
ckpt_dir (str): Checkpoint directory. | |
ckpt_path (str): Checkpoint path. | |
apply_yarn (Optional[bool]): Whether to apply YaRN (long-context extension). | |
yarn_scale (Optional[float]): Scale factor for YaRN. | |
yarn_beta_fast (Optional[int]): Beta fast variable for YaRN (i.e., low_freq_factor in Llama 3.1 RoPE scaling code) | |
yarn_beta_slow (Optional[int]): Beta slow variable for YaRN (i.e., high_freq_factor in Llama 3.1 RoPE scaling code) | |
original_seq_len (Optional[int]): Original sequence length. | |
vision_encoder (Optional[str]): Vision encoder name. | |
mm_projector (Optional[str]): Multi-modal projector name. | |
vision_encoder_in_channels (Optional[int]): Number of channels in the input image for the vision encoder. Default is 3, you can specify to int larger than 3. E.g. if you have 4-channel images with the last channel as the alpha channel, set this to 4. | |
rope_dim (Optional[str]): Dimensionality of the RoPE. Choices: "1D", "3D". | |
pytorch_rope_version (Optional[str]): Version of the PyTorch RoPE implementation. Choices: "v1", "v2". | |
original_latent_shape (Optional[list]): Original shape of the latent tensor needed for rope extension. | |
pad_to_multiple_of (Optional[int]): Pad the position embedding to a multiple of this value. | |
vision_encoder_in_channels (Optional[int]): Number of channels in the input image for the vision encoder. Default is 3. | |
insert_cross_attn (bool): Whether to insert the cross-attention layers after each multi-head self-attention (MSA) layer. | |
insert_cross_attn_every_k_layers (int): Insert cross-attention layers every k TransformerLayers. | |
context_dim (Optional[int]): The dimensionality of cross-attention embedding, e.g., T5 embed feature dim. | |
num_video_frames (Optional[int]): Number of video frames. | |
video_height (Optional[int]): Raw video pixel height dimension. | |
video_width (Optional[int]): Raw video pixel width dimension. | |
video_latent_shape (Optional[list]): Video tokenizer output dimension, in (T,H,W). | |
""" | |
dim: int = attrs.field(default=4096) | |
n_layers: int = attrs.field(default=32) | |
n_heads: int = attrs.field(default=32) | |
n_kv_heads: Optional[int] = attrs.field(default=8) | |
head_dim: Optional[int] = attrs.field(default=None) | |
vocab_size: int = attrs.field(default=128256) | |
ffn_hidden_size: int = attrs.field(default=14336) | |
norm_eps: float = attrs.field(default=1e-5) | |
rope_theta: float = attrs.field(default=500000) | |
apply_abs_pos_emb: bool = attrs.field(default=False) | |
max_batch_size: int = attrs.field(default=1) | |
max_seq_len: int = attrs.field(default=8192) | |
fuse_qkv: bool = attrs.field(default=False) | |
causal_mask: bool = attrs.field(default=True) | |
norm_type: str = attrs.field(default="rmsnorm") | |
precision: str = attrs.field(default="bfloat16") | |
use_qk_normalization: bool = False | |
tokenizer: Optional[TokenizerConfig] = None | |
tensor_model_parallel_size: int = attrs.field(default=1) | |
ckpt_dir: Optional[str] = attrs.field(default=None) | |
ckpt_path: Optional[str] = attrs.field( | |
default=None | |
) # If not None, load the model from this path instead of ckpt_dir | |
apply_yarn: Optional[bool] = attrs.field(default=False) | |
yarn_scale: Optional[float] = attrs.field(default=None) | |
yarn_beta_fast: Optional[int] = attrs.field(default=None) | |
yarn_beta_slow: Optional[int] = attrs.field(default=None) | |
original_seq_len: Optional[int] = attrs.field(default=None) | |
vision_encoder: Optional[str] = attrs.field(default=None) | |
vision_encoder_in_channels: Optional[int] = attrs.field(default=3) | |
mm_projector: Optional[str] = attrs.field(default=None) | |
rope_dim: Optional[str] = attrs.field(default="1D") | |
pytorch_rope_version: Optional[str] = attrs.field(default="v2") | |
original_latent_shape: Optional[list] = None | |
pad_to_multiple_of: Optional[int] = None | |
vision_encoder_in_channels: Optional[int] = attrs.field(default=3) | |
insert_cross_attn: bool = False | |
insert_cross_attn_every_k_layers: int = 1 | |
context_dim: Optional[int] = attrs.field(default=1024) | |
# For video training | |
num_video_frames: Optional[int] = None | |
# Raw video pixel dimension | |
video_height: Optional[int] = None | |
video_width: Optional[int] = None | |
# Video tokenizer output dimension, in (T,H,W), it's computed by num_video_frames/temporal_compress_factor, video_height/spatial_compression_fact, video_width/spatial_compression_fact | |
video_latent_shape: Optional[list] = None | |
def __getitem__(self, item): | |
return getattr(self, item) | |
class TrainingModelConfig: | |
""" | |
A class to hold model configuration arguments. | |
Args: | |
dim (int): The dimensionality of the input and output of each transformer block. | |
n_layers (int): Number of layers in the transformer. | |
n_heads (int): Number of attention heads. | |
n_kv_heads (Optional[int]): Number of key-value heads. If None, defaults to n_heads. Note: this is equivalent to | |
`num_gqa_groups` in TransformerEngine, where GQA means Grouped Query Attention. | |
head_dim (Optional[int]): Dimensionality of each head. If None, defaults to dim // n_heads. | |
vocab_size (int): Vocabulary size. | |
multiple_of (int): Ensures the hidden layer size is a multiple of this value for SwiGLU activation. | |
ffn_dim_multiplier (Optional[float]): Multiplier for feedforward network dimension. | |
ffn_hidden_size (Optional[int]): Hidden size for feedforward network. If None, use ffn_dim_multiplier to compute it. | |
norm_eps (float): Epsilon value for normalization. | |
rope_theta (float): Theta value for rotary positional embeddings. | |
apply_abs_pos_emb (bool): Whether to apply absolute position embeddings. | |
max_batch_size (int): Maximum batch size for inference (determines KV cache size). | |
max_seq_len (int): Maximum sequence length for input text (determines KV cache size). | |
fuse_qkv (bool): Whether to fuse QKV in attention. Flag for the pytorch backend. | |
causal_mask (bool): Whether to use causal mask. Defaults to True. | |
flash_attn (bool): Whether to use Flash attention. | |
norm_type (str): Type of normalization layer. Choices: "rmsnorm", "fused_rmsnorm", "layernorm", "np_layernorm". | |
backend (str): Backend for the model. | |
precision (str): Data type for the model. | |
ema (config.EMAConfig): Configuration for exponential moving average. | |
embedding_dropout(float): Dropout rate for the embedding layer. | |
attention_dropout(float): Dropout rate for attention. | |
hidden_dropout(float): Dropout after the attention and feed-forward layers (following TransformerEngine's | |
implementation in its TransformerLayer class). | |
use_qk_normalization (bool): Whether to enable QK normalization. | |
inference (bool): Whether the model is used for inference. | |
act_ckpt_enabled (bool): Whether to enable activation checkpointing. | |
fsdp_enabled (bool): Whether to enable FSDP. | |
fsdp (LazyDict): Configuration for FSDP. | |
ckpt_dir (str): Checkpoint directory. | |
ckpt_path (str): Checkpoint path. | |
cache_dir (str): Cache directory. | |
apply_yarn (Optional[bool]): Whether to apply YaRN (long-context extension). | |
yarn_scale (Optional[float]): Scale factor for YaRN. | |
yarn_beta_fast (Optional[int]): Beta fast variable for YaRN (i.e., low_freq_factor in Llama 3.1 RoPE scaling code) | |
yarn_beta_slow (Optional[int]): Beta slow variable for YaRN (i.e., high_freq_factor in Llama 3.1 RoPE scaling code) | |
original_seq_len (Optional[int]): Original sequence length. | |
depth_init (bool): If `True`, then each transformer block init uses its layer ID, and if `False`, each uses the | |
total number of transformer blocks. Defaults to `True` (following the TorchTitan implementation of Llama3). | |
context_parallel_size (int): Context parallel size. Defaults to 1. | |
tensor_model_parallel_size (int): Tensor model parallel size. Defaults to 1. | |
sequence_parallel (bool): Whether to use sequence parallelism. Defaults to False. | |
set_parallel_mode (bool): It is a boolean flag used by TransformerEngine to handle Tensor Parallelism. | |
Essentially, it is equivalent to `tensor_model_parallel_size > 1`. Defaults to `False`. | |
attention_tp (bool): Whether to use tensor parallelism for attention layers. | |
mm_projector (Optional[str]): Multimodal projector used for vision-language modeling. Defaults to None. | |
Choices: "identity", "linear", "mlp", "mlp_downsample". | |
video_latent_shape (Optional[list]): Shape of the video latent tensor. [T, H, W] | |
image_latent_shape (Optional[list]): Shape of the image latent tensor. [H, W] | |
num_video_frames (Optional[int]): Number of video frames. | |
rope_dim (Optional[str]): Dimensionality of the RoPE. Choices: "1D", "2D", "3D". | |
pytorch_rope_version (Optional[str]): Version of the RoPE for the `pytorch` backend. "v1" is the Llama implementation, and "v2" is HuggingFace/TransformerEngine implementation. | |
original_latent_shape (Optional[list]): Original shape of the latent tensor needed for rope extension. | |
pad_to_multiple_of (Optional[int]): Pad the position embedding to a multiple of this value. | |
peft_last_n_layers (Optional[int]): Number of last few layers to fine-tune in Parameter Efficient Fine-Tuning (PEFT). When this and peft_every_n_layers are both 0, it means all layers are fine-tuned (FFT). | |
peft_every_n_layers (Optional[int]): In Parameter Efficient Fine-Tuning (PEFT), every n layers are unfrozen and can be trained (in flamingo style). When this and peft_last_n_layers are both 0, | |
it means all layers are fine-tuned (FFT). For example, for a 40 layer model, n=8 means training layers 7, 15, 23, 31, 39, which includes the final layer. | |
It is advised to pick n such that the final layer is included. | |
freeze_vision_encoder (bool): Whether to freeze the vision encoder in vision-language model training. Defaults to False. | |
vision_encoder_in_channels (Optional[int]): Number of channels in the input image for the vision encoder. Default is 3, you can specify to int larger than 3. E.g. if you have 4-channel images with the last channel as the alpha channel, set this to 4. | |
insert_cross_attn (bool): Whether to insert the cross-attention layers after each multi-head self-attention (MSA) layer. | |
insert_cross_attn_every_k_layers (int): Insert cross-attention layers every k TransformerLayers. | |
context_dim (Optional[int]): The dimensionality of cross-attention embedding, e.g., T5 embed feature dim. | |
finetune_layers_with_cross_attn (bool): Whether to finetune Transformer layers w/ CA (cross-attn). | |
finetune_layers_without_cross_attn (bool): Whether to finetune Transformer layers w/o CA (cross-attn). | |
use_action_condition (bool): Whether to use the robot action condition. | |
action_embedding_mode (Optional[str]): The mode of the robot action embedding. Choices: "matrix", "mlp". | |
action_dim (Optional[int]): The dimensionality of the raw robot action tensor (e.g., 7 for DROID, [Δx, Δy, Δz, rx, ry, rz, gripper_open]). | |
action_embedding_dim (Optional[int]): The dimensionality of the robot action embedding. | |
group_causal_mask_mode (Optional[str]): The mode of the group causal mask. Choices: "causal", "group_diagonal". | |
sync_1d_parameters (bool): Whether to synchronize layernorm parameters (1D) across tensor parallel ranks (default True). | |
Note: this is to ensure all TP-ranks have the same layernorm parameters. | |
z_loss_coeff (float): The coefficient for the z-loss. | |
insert_medusa_head (bool): Whether to insert the Medusa head. | |
ft_medusa_option (str): Options on which layers to finetune, choices like: | |
"fft": fully fine-tune both medusa heads and all LLM backbone; | |
"head": fine-tune medusa heads; | |
"head_out": fine-tune medusa heads, and the output layer; | |
"head_out_last_k_layer": fine-tune medusa heads, the output layer, and the last k layer(s) of the LLM backbone. | |
medusa_num_heads (int): Number of heads in the Medusa head. | |
medusa_num_layers (int): Number of layers in the Medusa head. | |
medusa_concat_heads (bool): Whether to concatenate multiple medusa heads into fused matrix, only applicable when medusa_num_layers = 1. | |
zero_init_cross_attn_proj (bool): Whether to initialize the cross-attn proj layer with zeros (default False). | |
concat_action_to_context (bool): Whether to concatenate the action embedding to the context (default False). | |
""" | |
dim: int = attrs.field(default=4096) | |
n_layers: int = attrs.field(default=32) | |
n_heads: int = attrs.field(default=32) | |
n_kv_heads: Optional[int] = attrs.field(default=8) | |
head_dim: Optional[int] = attrs.field(default=None) | |
vocab_size: int = attrs.field(default=128256) | |
multiple_of: int = attrs.field(default=1024) # make SwiGLU hidden layer size multiple of large power of 2 | |
ffn_dim_multiplier: Optional[float] = attrs.field(default=1.3) | |
ffn_hidden_size: Optional[int] = attrs.field(default=None) | |
norm_eps: float = attrs.field(default=1e-5) | |
rope_theta: float = attrs.field(default=500000) | |
apply_abs_pos_emb: bool = attrs.field(default=False) | |
max_batch_size: int = attrs.field(default=1) | |
max_seq_len: int = attrs.field(default=8192) | |
fuse_qkv: bool = attrs.field(default=False) | |
causal_mask: bool = attrs.field(default=True) | |
flash_attn: bool = attrs.field(default=True) | |
norm_type: str = attrs.field(default="rmsnorm") | |
backend: str = attrs.field(default="pytorch") | |
precision: str = attrs.field(default="bfloat16") | |
ema: config.EMAConfig = config.EMAConfig(enabled=False) | |
embedding_dropout: float = 0.0 | |
attention_dropout: float = 0.0 | |
hidden_dropout: float = 0.0 | |
use_qk_normalization: bool = False | |
tokenizer: Optional[TokenizerConfig] = None | |
inference: bool = False | |
act_ckpt_enabled: bool = False | |
fsdp_enabled: bool = False | |
context_parallel_size: int = attrs.field(default=1) | |
tensor_model_parallel_size: int = attrs.field(default=1) | |
sequence_parallel: bool = attrs.field(default=False) | |
set_parallel_mode: bool = attrs.field(default=False) | |
fsdp: LazyDict = LazyDict( | |
dict( | |
policy="auto", # choices: ["size", "auto"] | |
min_num_params=1024, # Used as policy == "size" | |
sharding_strategy="hybrid", # Choices: ["full", "hybrid"]. "full" means sharding_group_size = world_size | |
sharding_group_size=8, # If None, defaults to min(world_size, 8). Recommends 8 for training on 8-GPU nodes. | |
) | |
) | |
ckpt_dir: Optional[str] = attrs.field(default="") | |
ckpt_path: Optional[str] = attrs.field( | |
default=None | |
) # If not None, load the model from this path instead of ckpt_dir | |
cache_dir: Optional[str] = attrs.field(default="/project/cosmos/ar/cache") | |
apply_yarn: Optional[bool] = attrs.field(default=False) | |
yarn_scale: Optional[float] = attrs.field(default=None) | |
yarn_beta_fast: Optional[int] = attrs.field(default=None) | |
yarn_beta_slow: Optional[int] = attrs.field(default=None) | |
original_seq_len: Optional[int] = attrs.field(default=None) | |
depth_init: bool = attrs.field(default=True) | |
ignore_first_num_tokens: int = 0 | |
z_loss_coeff: float = 1e-4 | |
attention_tp: bool = False | |
vision_encoder: Optional[str] = attrs.field(default=None) | |
mm_projector: Optional[str] = attrs.field(default=None) | |
rope_dim: Optional[str] = attrs.field(default="1D") | |
pytorch_rope_version: Optional[str] = attrs.field(default="v2") | |
original_latent_shape: Optional[list] = None | |
pad_to_multiple_of: Optional[int] = None | |
peft_last_n_layers: Optional[int] = attrs.field(default=0) | |
peft_every_n_layers: Optional[int] = attrs.field(default=0) | |
freeze_vision_encoder: bool = False | |
vision_encoder_in_channels: Optional[int] = attrs.field(default=3) | |
insert_cross_attn: bool = False | |
insert_cross_attn_every_k_layers: int = 1 | |
context_dim: Optional[int] = attrs.field(default=1024) | |
finetune_layers_with_cross_attn: bool = False | |
finetune_layers_without_cross_attn: bool = False | |
use_action_condition: bool = False | |
action_embedding_mode: Optional[str] = attrs.field(default="mlp") | |
action_dim: Optional[int] = attrs.field(default=_ACTION_DIM) | |
action_embedding_dim: Optional[int] = attrs.field(default=1024) | |
group_causal_mask_mode: Optional[str] = attrs.field(default=None) | |
sync_1d_parameters: bool = True | |
# hyper-parameters for the medusa head configs | |
insert_medusa_head: bool = False | |
ft_medusa_option: str = "fft" | |
medusa_num_heads: int = 7 | |
medusa_num_layers: int = 1 | |
medusa_concat_heads: bool = True | |
# For video training | |
num_video_frames: Optional[int] = None | |
# Raw video pixel dimension | |
video_height: Optional[int] = None | |
video_width: Optional[int] = None | |
# Video tokenizer output dimension, in (T,H,W), it's computed by num_video_frames/temporal_compress_factor, video_height/spatial_compression_fact, video_width/spatial_compression_fact | |
video_latent_shape: Optional[list] = None | |
# For image training | |
image_latent_shape: Optional[list] = None | |
# For robot training (action) | |
zero_init_cross_attn_proj: bool = False | |
# For robot training (action) | |
concat_action_to_context: bool = False | |
def __getitem__(self, item): | |
return getattr(self, item) | |