Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Default config for cosmos_ar project.""" | |
import os | |
from typing import Any, List | |
import attrs | |
from cosmos_predict1.autoregressive.configs.registry import register_configs | |
from cosmos_predict1.autoregressive.trainer import Trainer | |
from cosmos_predict1.utils import config, log | |
from cosmos_predict1.utils.config_helper import import_all_modules_from_package | |
class Config(config.Config): | |
defaults: List[Any] = attrs.field( | |
factory=lambda: [ | |
"_self_", | |
{"model": None}, | |
{"data_train": "mock_video"}, | |
{"data_val": None}, | |
{"optimizer": "fused_adamw"}, | |
{"scheduler": "warmup_cosine_lr"}, | |
{"checkpoint": "local"}, | |
{"callbacks": "basic"}, | |
{"global_config": None}, | |
{"experiment": None}, | |
] | |
) | |
def validate(self) -> None: | |
"""Validate that the config has all required fields.""" | |
assert self.job.project != "", "job.project is not set" | |
assert self.job.group != "", "job.group is not set" | |
assert self.job.name != "", "job.name is not set" | |
log.info("Validating config for cosmos_autoregressive job") | |
# FSDP config check | |
if self.model.model_config.fsdp_enabled: | |
assert self.trainer.distributed_parallelism == "fsdp" | |
else: | |
assert self.trainer.distributed_parallelism == "ddp" | |
# Transformer Engine config check | |
if self.model.model_config.backend == "transformer_engine": | |
assert ( | |
"NVTE_FLASH_ATTN" in os.environ and os.environ["NVTE_FLASH_ATTN"] == "1" | |
) # Enable Flash attention for transformer engine | |
# TP, CP config check | |
if self.model_parallel is not None: | |
if self.model_parallel.context_parallel_size > 1: | |
assert ( | |
self.model.model_config.backend == "transformer_engine" | |
), "Context parallelism is only supported in transformer engine." | |
if self.model_parallel.tensor_model_parallel_size > 1: | |
assert ( | |
self.model.model_config.set_parallel_mode | |
), "Tensor model parallelism is only supported in parallel mode." | |
if self.model_parallel.sequence_parallel: | |
assert ( | |
self.model_parallel.tensor_model_parallel_size > 1 | |
), "Sequence parallelism is only supported in tensor model parallelism." | |
assert ( | |
self.model.model_config.backend == "transformer_engine" | |
), "Sequence parallelism is only supported in transformer engine." | |
def make_config(): | |
c = Config( | |
model=None, | |
optimizer=None, | |
scheduler=None, | |
dataloader_train=None, | |
dataloader_val=None, | |
checkpoint=None, | |
) | |
c.job.project = "cosmos_autoregressive" | |
c.job.group = "debug" | |
c.job.name = "default_${now:%Y-%m-%d}_${now:%H-%M-%S}" | |
c.trainer.type = Trainer | |
c.trainer.run_validation = True | |
c.trainer.seed = 0 | |
c.trainer.max_iter = 10 | |
c.trainer.logging_iter = 1 | |
c.trainer.callbacks = None | |
register_configs() | |
# experiment config are defined in the experiment folder | |
# call import_all_modules_from_package to register them | |
import_all_modules_from_package("cosmos_predict1.autoregressive.configs.experiment") | |
return c | |