roll-ai's picture
Upload 381 files
b6af722 verified
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Dict, Optional, Tuple
import torch
from diffusers import EDMEulerScheduler
from megatron.core import parallel_state
from torch import Tensor
from cosmos_predict1.diffusion.conditioner import BaseVideoCondition
from cosmos_predict1.diffusion.model.model_t2w import DiffusionT2WModel
from cosmos_predict1.diffusion.module import parallel
from cosmos_predict1.diffusion.module.parallel import cat_outputs_cp, split_inputs_cp
from cosmos_predict1.utils.lazy_config import instantiate as lazy_instantiate
@dataclass
class VideoLatentDiffusionDecoderCondition(BaseVideoCondition):
# latent_condition will concat to the input of network, along channel dim;
# cfg will make latent_condition all zero padding.
latent_condition: Optional[torch.Tensor] = None
latent_condition_sigma: Optional[torch.Tensor] = None
class LatentDiffusionDecoderModel(DiffusionT2WModel):
def __init__(self, config):
super().__init__(config)
"""
latent_corruptor: the corruption module is used to corrupt the latents. It add gaussian noise to the latents.
pixel_corruptor: the corruption module is used to corrupt the pixels. It apply gaussian blur kernel to pixels in a temporal consistent way.
tokenizer_corruptor: the corruption module is used to simulate tokenizer reconstruction errors.
diffusion decoder noise augmentation pipeline for continuous token condition model:
condition: GT_video [T, H, W]
-> tokenizer_corruptor~(8x8x8) encode -> latent_corruptor -> tokenizer_corruptor~(8x8x8) decode
-> pixel corruptor
-> tokenizer~(1x8x8) encode -> condition [T, H/8, W/8]
GT: GT_video [T, H, W] -> tokenizer~(1x8x8) -> x_t [T, H/8, W/8].
diffusion decoder noise augmentation pipeline for discrete token condition model:
condition: GT_video [T, H, W]
-> pixel corruptor
-> discrete tokenizer encode -> condition [T, T/8, H/16, W/16]
GT: GT_video [T, H, W] -> tokenizer~(8x8x8) -> x_t [T, T/8, H/8, W/8].
"""
self.latent_corruptor = lazy_instantiate(config.latent_corruptor)
self.pixel_corruptor = lazy_instantiate(config.pixel_corruptor)
self.tokenizer_corruptor = lazy_instantiate(config.tokenizer_corruptor)
if self.latent_corruptor:
self.latent_corruptor.to(**self.tensor_kwargs)
if self.pixel_corruptor:
self.pixel_corruptor.to(**self.tensor_kwargs)
if self.tokenizer_corruptor:
if hasattr(self.tokenizer_corruptor, "reset_dtype"):
self.tokenizer_corruptor.reset_dtype()
else:
assert self.pixel_corruptor is not None
self.diffusion_decoder_cond_sigma_low = config.diffusion_decoder_cond_sigma_low
self.diffusion_decoder_cond_sigma_high = config.diffusion_decoder_cond_sigma_high
self.diffusion_decoder_corrupt_prob = config.diffusion_decoder_corrupt_prob
if hasattr(config, "condition_on_tokenizer_corruptor_token"):
self.condition_on_tokenizer_corruptor_token = config.condition_on_tokenizer_corruptor_token
else:
self.condition_on_tokenizer_corruptor_token = False
self.scheduler = EDMEulerScheduler(sigma_max=80, sigma_min=0.02, sigma_data=self.sigma_data)
def generate_samples_from_batch(
self,
data_batch: Dict,
guidance: float = 1.5,
seed: int = 1,
state_shape: Tuple | None = None,
n_sample: int | None = 1,
is_negative_prompt: bool = False,
num_steps: int = 35,
apply_corruptor: bool = False,
corrupt_sigma: float = 0.01,
preencode_condition: bool = False,
) -> Tensor:
"""
Generate samples from the batch. Based on given batch, it will automatically determine whether to generate image or video samples.
Args:
data_batch (dict): raw data batch draw from the training data loader.
iteration (int): Current iteration number.
guidance (float): guidance weights
seed (int): random seed
state_shape (tuple): shape of the state, default to self.state_shape if not provided
n_sample (int): number of samples to generate
is_negative_prompt (bool): use negative prompt t5 in uncondition if true
num_steps (int): number of steps for the diffusion process
preencode_condition (bool): use pre-computed condition if true, save tokenizer's inference time memory/
"""
if not preencode_condition:
self._normalize_video_databatch_inplace(data_batch)
self._augment_image_dim_inplace(data_batch)
if n_sample is None:
n_sample = data_batch[self.input_data_key].shape[0]
condition, uncondition = self._get_conditions(
data_batch,
is_negative_prompt=is_negative_prompt,
apply_corruptor=apply_corruptor,
corrupt_sigma=corrupt_sigma,
preencode_condition=preencode_condition,
)
self.scheduler.set_timesteps(num_steps)
xt = torch.randn(size=(n_sample,) + tuple(state_shape)) * self.scheduler.init_noise_sigma
to_cp = self.net.is_context_parallel_enabled
if to_cp:
xt = split_inputs_cp(x=xt, seq_dim=2, cp_group=self.net.cp_group)
for t in self.scheduler.timesteps:
xt = xt.to(**self.tensor_kwargs)
xt_scaled = self.scheduler.scale_model_input(xt, timestep=t)
# Predict the noise residual
t = t.to(**self.tensor_kwargs)
net_output_cond = self.net(x=xt_scaled, timesteps=t, **condition.to_dict())
net_output_uncond = self.net(x=xt_scaled, timesteps=t, **uncondition.to_dict())
net_output = net_output_cond + guidance * (net_output_cond - net_output_uncond)
# Compute the previous noisy sample x_t -> x_t-1
xt = self.scheduler.step(net_output, t, xt).prev_sample
samples = xt
if to_cp:
samples = cat_outputs_cp(samples, seq_dim=2, cp_group=self.net.cp_group)
return samples
def _get_conditions(
self,
data_batch: dict,
is_negative_prompt: bool = False,
apply_corruptor: bool = True,
corrupt_sigma: float = 1.5,
preencode_condition: bool = False,
):
"""Get the conditions for the model.
Args:
data_batch: Input data dictionary
is_negative_prompt: Whether to use negative prompting
condition_latent: Conditioning frames tensor (B,C,T,H,W)
num_condition_t: Number of frames to condition on
add_input_frames_guidance: Whether to apply guidance to input frames
Returns:
condition: Input conditions
uncondition: Conditions removed/reduced to minimum (unconditioned)
"""
self._add_latent_conditions_to_data_batch(
data_batch,
apply_corruptor=apply_corruptor,
corrupt_sigma=corrupt_sigma,
preencode_condition=preencode_condition,
)
if is_negative_prompt:
condition, uncondition = self.conditioner.get_condition_with_negative_prompt(data_batch)
else:
condition, uncondition = self.conditioner.get_condition_uncondition(data_batch)
# For inference, check if parallel_state is initialized
to_cp = self.net.is_context_parallel_enabled
if parallel_state.is_initialized():
condition = broadcast_condition(condition, to_tp=False, to_cp=to_cp)
uncondition = broadcast_condition(uncondition, to_tp=False, to_cp=to_cp)
if parallel_state.get_context_parallel_world_size() > 1:
cp_group = parallel_state.get_context_parallel_group()
condition.latent_condition = split_inputs_cp(condition.latent_condition, seq_dim=2, cp_group=cp_group)
condition.latent_condition_sigma = split_inputs_cp(
condition.latent_condition_sigma, seq_dim=2, cp_group=cp_group
)
uncondition.latent_condition = split_inputs_cp(uncondition.latent_condition, seq_dim=2, cp_group=cp_group)
uncondition.latent_condition_sigma = split_inputs_cp(
uncondition.latent_condition_sigma, seq_dim=2, cp_group=cp_group
)
return condition, uncondition
def _add_latent_conditions_to_data_batch(
self,
data_batch: dict,
apply_corruptor: bool = True,
corrupt_sigma: float = 1.5,
preencode_condition: bool = False,
):
# Latent state
raw_state = data_batch[self.input_data_key]
if self.condition_on_tokenizer_corruptor_token:
if preencode_condition:
latent_condition = raw_state.to(torch.int32).contiguous()
corrupted_pixel = self.tokenizer_corruptor.decode(latent_condition[:, 0])
else:
corrupted_pixel = (
self.pixel_corruptor(raw_state) if apply_corruptor and self.pixel_corruptor else raw_state
)
latent_condition = self.tokenizer_corruptor.encode(corrupted_pixel)
latent_condition = latent_condition[1] if isinstance(latent_condition, tuple) else latent_condition
corrupted_pixel = self.tokenizer_corruptor.decode(latent_condition)
latent_condition = latent_condition.unsqueeze(1)
else:
if preencode_condition:
latent_condition = raw_state
corrupted_pixel = self.decode(latent_condition)
else:
corrupted_pixel = (
self.pixel_corruptor(raw_state) if apply_corruptor and self.pixel_corruptor else raw_state
)
latent_condition = self.encode(corrupted_pixel).contiguous()
sigma = (
torch.rand((latent_condition.shape[0],)).to(**self.tensor_kwargs) * corrupt_sigma
) # small value to indicate clean video
c_noise_cond = self.scheduler.precondition_noise(sigma=sigma)
if corrupt_sigma != self.diffusion_decoder_cond_sigma_low and self.diffusion_decoder_corrupt_prob > 0:
sigma_expand = sigma.view((-1,) + (1,) * (latent_condition.dim() - 1))
noise = sigma_expand * torch.randn_like(latent_condition)
latent_condition = latent_condition + noise
data_batch["latent_condition_sigma"] = torch.ones_like(latent_condition[:, 0:1, ::]) * c_noise_cond
data_batch["latent_condition"] = latent_condition
def broadcast_condition(condition: BaseVideoCondition, to_tp: bool = True, to_cp: bool = True) -> BaseVideoCondition:
condition_kwargs = {}
for k, v in condition.to_dict().items():
if isinstance(v, torch.Tensor):
assert not v.requires_grad, f"{k} requires gradient. the current impl does not support it"
condition_kwargs[k] = parallel.broadcast(v, to_tp=to_tp, to_cp=to_cp)
condition = type(condition)(**condition_kwargs)
return condition