Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from collections import namedtuple | |
import torch | |
from torch import nn | |
from cosmos_predict1.autoregressive.tokenizer.modules import CausalConv3d, DecoderFactorized, EncoderFactorized | |
from cosmos_predict1.autoregressive.tokenizer.quantizers import FSQuantizer | |
from cosmos_predict1.utils import log | |
NetworkEval = namedtuple("NetworkEval", ["reconstructions", "quant_loss", "quant_info"]) | |
class CausalDiscreteVideoTokenizer(nn.Module): | |
def __init__(self, z_channels: int, z_factor: int, embedding_dim: int, **kwargs) -> None: | |
super().__init__() | |
self.name = kwargs.get("name", "CausalDiscreteVideoTokenizer") | |
self.embedding_dim = embedding_dim | |
self.encoder = EncoderFactorized(z_channels=z_factor * z_channels, **kwargs) | |
self.decoder = DecoderFactorized(z_channels=z_channels, **kwargs) | |
self.quant_conv = CausalConv3d(z_factor * z_channels, embedding_dim, kernel_size=1, padding=0) | |
self.post_quant_conv = CausalConv3d(embedding_dim, z_channels, kernel_size=1, padding=0) | |
self.quantizer = FSQuantizer(**kwargs) | |
num_parameters = sum(param.numel() for param in self.parameters()) | |
log.debug(f"model={self.name}, num_parameters={num_parameters:,}") | |
log.debug(f"z_channels={z_channels}, embedding_dim={self.embedding_dim}.") | |
def to(self, *args, **kwargs): | |
setattr(self.quantizer, "dtype", kwargs.get("dtype", torch.bfloat16)) | |
return super(CausalDiscreteVideoTokenizer, self).to(*args, **kwargs) | |
def encode(self, x): | |
h = self.encoder(x) | |
h = self.quant_conv(h) | |
return self.quantizer(h) | |
def decode(self, quant): | |
quant = self.post_quant_conv(quant) | |
return self.decoder(quant) | |
def forward(self, input): | |
quant_info, quant_codes, quant_loss = self.encode(input) | |
reconstructions = self.decode(quant_codes) | |
if self.training: | |
return dict(reconstructions=reconstructions, quant_loss=quant_loss, quant_info=quant_info) | |
return NetworkEval(reconstructions=reconstructions, quant_loss=quant_loss, quant_info=quant_info) | |