Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Quantizers for discrete image and video tokenization.""" | |
from typing import Optional | |
import torch | |
import torch.nn as nn | |
from einops import rearrange | |
from cosmos_predict1.autoregressive.tokenizer.utils import default, pack_one, round_ste, unpack_one | |
class FSQuantizer(nn.Module): | |
"""Finite Scalar Quantization: VQ-VAE Made Simple - https://arxiv.org/abs/2309.15505 | |
Adapted from: https://github.com/lucidrains/vector-quantize-pytorch/blob/9502a1f447876d53fd37685b226bf28f250dc4a3/ | |
vector_quantize_pytorch/finite_scalar_quantization.py | |
[Copyright (c) 2020 Phil Wang] | |
https://github.com/lucidrains/vector-quantize-pytorch/blob/9502a1f447876d53fd37685b226bf28f250dc4a3/LICENSE | |
""" | |
def __init__( | |
self, | |
levels: list[int], | |
dim: Optional[int] = None, | |
num_codebooks=1, | |
keep_num_codebooks_dim: Optional[bool] = None, | |
scale: Optional[float] = None, | |
**ignore_kwargs, | |
): | |
super().__init__() | |
self.dtype = ignore_kwargs.get("dtype", torch.float32) | |
_levels = torch.tensor(levels, dtype=torch.int32) | |
self.register_buffer("_levels", _levels, persistent=False) | |
_basis = torch.cumprod(torch.tensor([1] + levels[:-1]), dim=0, dtype=torch.int32) | |
self.register_buffer("_basis", _basis, persistent=False) | |
self.scale = scale | |
codebook_dim = len(levels) | |
self.codebook_dim = codebook_dim | |
effective_codebook_dim = codebook_dim * num_codebooks | |
self.num_codebooks = num_codebooks | |
self.effective_codebook_dim = effective_codebook_dim | |
keep_num_codebooks_dim = default(keep_num_codebooks_dim, num_codebooks > 1) | |
assert not (num_codebooks > 1 and not keep_num_codebooks_dim) | |
self.keep_num_codebooks_dim = keep_num_codebooks_dim | |
self.dim = default(dim, len(_levels) * num_codebooks) | |
has_projections = self.dim != effective_codebook_dim | |
self.project_in = nn.Linear(self.dim, effective_codebook_dim) if has_projections else nn.Identity() | |
self.project_out = nn.Linear(effective_codebook_dim, self.dim) if has_projections else nn.Identity() | |
self.has_projections = has_projections | |
self.codebook_size = self._levels.prod().item() | |
implicit_codebook = self.indices_to_codes(torch.arange(self.codebook_size), project_out=False) | |
self.register_buffer("implicit_codebook", implicit_codebook, persistent=False) | |
def bound(self, z: torch.Tensor, eps: float = 1e-3) -> torch.Tensor: | |
"""Bound `z`, an array of shape (..., d).""" | |
half_l = (self._levels - 1) * (1 + eps) / 2 | |
offset = torch.where(self._levels % 2 == 0, 0.5, 0.0) | |
shift = (offset / half_l).atanh() | |
return (z + shift).tanh() * half_l - offset | |
def quantize(self, z: torch.Tensor) -> torch.Tensor: | |
"""Quantizes z, returns quantized zhat, same shape as z.""" | |
quantized = round_ste(self.bound(z)) | |
half_width = self._levels // 2 # Renormalize to [-1, 1]. | |
return quantized / half_width | |
def _scale_and_shift(self, zhat_normalized: torch.Tensor) -> torch.Tensor: | |
half_width = self._levels // 2 | |
return (zhat_normalized * half_width) + half_width | |
def _scale_and_shift_inverse(self, zhat: torch.Tensor) -> torch.Tensor: | |
half_width = self._levels // 2 | |
return (zhat - half_width) / half_width | |
def codes_to_indices(self, zhat: torch.Tensor) -> torch.Tensor: | |
"""Converts a `code` to an index in the codebook.""" | |
assert zhat.shape[-1] == self.codebook_dim | |
zhat = self._scale_and_shift(zhat).float() | |
return (zhat * self._basis).sum(dim=-1).to(torch.int32) | |
def indices_to_codes(self, indices: torch.Tensor, project_out=True) -> torch.Tensor: | |
"""Inverse of `codes_to_indices`.""" | |
is_img_or_video = indices.ndim >= (3 + int(self.keep_num_codebooks_dim)) | |
indices = rearrange(indices, "... -> ... 1") | |
codes_non_centered = (indices // self._basis) % self._levels | |
codes = self._scale_and_shift_inverse(codes_non_centered) | |
if self.keep_num_codebooks_dim: | |
codes = rearrange(codes, "... c d -> ... (c d)") | |
if project_out: | |
codes = self.project_out(codes) | |
if is_img_or_video: | |
codes = rearrange(codes, "b ... d -> b d ...") | |
return codes.to(self.dtype) | |
def forward(self, z: torch.Tensor) -> torch.Tensor: | |
""" | |
einstein notation | |
b - batch | |
n - sequence (or flattened spatial dimensions) | |
d - feature dimension, which is also log2(codebook size) | |
c - number of codebook dim | |
""" | |
is_img_or_video = z.ndim >= 4 | |
# standardize image or video into (batch, seq, dimension) | |
if is_img_or_video: | |
z = rearrange(z, "b d ... -> b ... d") | |
z, ps = pack_one(z, "b * d") | |
assert z.shape[-1] == self.dim, f"expected dimension of {self.dim} but found dimension of {z.shape[-1]}" | |
z = self.project_in(z) | |
z = rearrange(z, "b n (c d) -> b n c d", c=self.num_codebooks) | |
codes = self.quantize(z) | |
indices = self.codes_to_indices(codes) | |
codes = rearrange(codes, "b n c d -> b n (c d)") | |
out = self.project_out(codes) | |
# reconstitute image or video dimensions | |
if is_img_or_video: | |
out = unpack_one(out, ps, "b * d") | |
out = rearrange(out, "b ... d -> b d ...") | |
indices = unpack_one(indices, ps, "b * c") | |
dummy_loss = torch.zeros_like(out.mean(dim=[1, 2, 3], keepdim=True)) | |
else: | |
dummy_loss = torch.zeros_like(out.mean(dim=[1, 2], keepdim=True)).unsqueeze(1) | |
if not self.keep_num_codebooks_dim: | |
indices = rearrange(indices, "... 1 -> ...") | |
return (indices, out.to(self.dtype), dummy_loss) | |