Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
from typing import Any, Optional, Tuple, Union | |
import torch | |
from megatron.core import ModelParallelConfig, parallel_state | |
from torch import nn | |
from torch.distributed import _functional_collectives as funcol | |
from transformer_engine.pytorch.attention import _SplitAlongDim, apply_rotary_pos_emb, check_set_window_size | |
from transformer_engine.pytorch.constants import AttnBiasTypes | |
from transformer_engine.pytorch.float8_tensor import Float8Tensor | |
from transformer_engine.pytorch.module.linear import Linear as LinearTE | |
from transformer_engine.pytorch.module.rmsnorm import RMSNorm as RMSNormTE | |
from cosmos_predict1.autoregressive.modules.embedding import RotaryPositionEmbedding | |
from cosmos_predict1.autoregressive.modules.linear import ColumnParallelLinear, RowParallelLinear | |
from cosmos_predict1.autoregressive.modules.normalization import create_norm | |
from cosmos_predict1.autoregressive.utils.parallel import AllReduceBWDRMSNormTE | |
class GQA(nn.Module): | |
""" | |
Grouped Query Attention (GQA) with KV cache (only supported for inference). | |
""" | |
def __init__( | |
self, | |
n_heads: int, | |
n_kv_heads: Union[int, None], | |
dim: int, | |
max_batch_size: int, | |
max_seq_len: int, | |
context_dim: Optional[int] = None, | |
inference: bool = True, | |
flash_attn: bool = True, | |
use_qk_normalization: bool = False, | |
norm_type: str = "rmsnorm", | |
norm_eps: float = 1e-5, | |
attention_dropout: float = 0.0, | |
set_parallel_mode: Optional[bool] = False, | |
model_parallel: Optional[ModelParallelConfig] = None, | |
attention_tp: Optional[bool] = False, | |
causal_mask: Optional[bool] = True, | |
head_dim: Optional[int] = None, | |
fuse_qkv: bool = False, | |
precision: str = "bfloat16", | |
attention_type: str = "self", | |
): | |
""" | |
Initializes the GQA module. | |
Args: | |
n_heads (int): The number of attention heads. | |
n_kv_heads (int, optional): The number of key-value attention heads. None defaults to n_heads. | |
dim (int): The dimensionality of the input and output. | |
max_batch_size (int): The maximum batch size. | |
max_seq_len (int): The maximum sequence length. | |
context_dim (int, optional): The dimensionality of the context for cross-attn. Defaults to None. | |
inference (bool, optional): Whether the model is in inference mode. Defaults to True. | |
flash_attn (bool, optional): Whether to use Flash attention. Defaults to True. | |
use_qk_normalization (bool, optional): Whether to apply QK normalization. Defaults to False. | |
norm_type (str, optional): The type of normalization layer. Defaults to "rmsnorm". | |
norm_eps (float, optional): The epsilon value for normalization. Defaults to 1e-5. | |
attention_dropout (float, optional): Dropout rate for attention. Defaults to 0.0. | |
tp_group (int, optional): The tensor parallel group. | |
set_parallel_mode (bool, optional): Whether to set parallel mode which enables parallel linear. Defaults to False. | |
model_parallel (ModelParallelConfig, optional): The Megatron model parallel configuration. | |
attention_tp (bool, optional): Whether to use tensor parallelism for attention layers. Defaults to False. | |
causal_mask (bool, optional): Whether to use causal mask. Defaults to True. | |
head_dim (int, optional): The dimensionality of each attention head. If None, defaults to dim // n_heads. | |
fuse_qkv (bool, optional): Whether to fuse QKV projections. Defaults to False. | |
precision (str, optional): The precision of the model. Defaults to "bfloat16". | |
attention_type (str, optional): The type of attention. Defaults to "self". | |
""" | |
super().__init__() | |
assert attention_type in ["self", "cross", "full"], f"Invalid attention type: {attention_type}" | |
self.attention_type = attention_type | |
self.model_parallel = model_parallel | |
if self.model_parallel and self.model_parallel.tensor_model_parallel_size > 1 and attention_tp: | |
self.tp_size = self.model_parallel.tensor_model_parallel_size | |
else: | |
self.tp_size = 1 | |
context_dim = dim if context_dim is None else context_dim | |
self.dim = dim | |
self.context_dim = context_dim | |
self.n_kv_heads = n_heads if n_kv_heads is None else n_kv_heads | |
self.n_local_kv_heads = self.n_kv_heads // self.tp_size | |
self.n_local_heads = n_heads // self.tp_size | |
self.n_rep = self.n_local_heads // self.n_local_kv_heads | |
self.head_dim = dim // n_heads if head_dim is None else head_dim | |
assert flash_attn, "Flash attention is required." | |
self.attention_dropout = attention_dropout | |
self.causal_mask = causal_mask | |
self.fuse_qkv = fuse_qkv | |
self.precision = precision | |
if fuse_qkv: | |
assert context_dim == dim, f"Fuse QKV requires context_dim ({context_dim}) to be equal to dim ({dim})" | |
self.total_head_dim = (n_heads + 2 * self.n_kv_heads) * self.head_dim | |
self.total_local_head_dim = (self.n_local_heads + 2 * self.n_local_kv_heads) * self.head_dim | |
if set_parallel_mode and attention_tp and not inference: | |
kwargs = {"bias": False, "init_method": lambda x: x, "config": self.model_parallel} | |
# Using column and row parallel linear layers | |
if fuse_qkv: | |
self.wqkv = ColumnParallelLinear(dim, self.total_head_dim, **kwargs) | |
else: | |
self.wq = ColumnParallelLinear(dim, n_heads * self.head_dim, **kwargs) | |
self.wk = ColumnParallelLinear(context_dim, self.n_kv_heads * self.head_dim, **kwargs) | |
self.wv = ColumnParallelLinear(context_dim, self.n_kv_heads * self.head_dim, **kwargs) | |
# Linear layer for output projection | |
self.wo = RowParallelLinear( | |
n_heads * self.head_dim, dim, input_is_parallel=True, skip_bias_add=True, **kwargs | |
) | |
else: | |
# Linear layers for query, key, and value projections | |
if fuse_qkv: | |
self.wqkv = nn.Linear(dim, self.total_local_head_dim, bias=False) | |
else: | |
self.wq = nn.Linear(dim, self.n_local_heads * self.head_dim, bias=False) | |
self.wk = nn.Linear(context_dim, self.n_local_kv_heads * self.head_dim, bias=False) | |
self.wv = nn.Linear(context_dim, self.n_local_kv_heads * self.head_dim, bias=False) | |
self.wo = nn.Linear(self.n_local_heads * self.head_dim, dim, bias=False) | |
self.max_batch_size = max_batch_size | |
self.max_seq_len = max_seq_len | |
if inference and self.attention_type == "self": | |
# Cache for key and value tensors | |
self.init_kv_cache() | |
# QK normalization layers | |
if use_qk_normalization: | |
assert n_heads % self.tp_size == 0, "n_heads must be divisible by tensor_model_parallel_size" | |
assert self.n_kv_heads % self.tp_size == 0, "n_kv_heads must be divisible by tensor_model_parallel_size" | |
self.q_norm = create_norm(norm_type, dim=self.head_dim, eps=norm_eps) | |
self.k_norm = create_norm(norm_type, dim=self.head_dim, eps=norm_eps) | |
else: | |
self.q_norm = nn.Identity() | |
self.k_norm = nn.Identity() | |
self.use_qk_normalization = use_qk_normalization | |
self.inference = inference | |
if fuse_qkv: | |
# Register hook to load fused QKV weights | |
self._register_load_state_dict_pre_hook(self.load_hook) | |
self.to(dtype=getattr(torch, self.precision)) | |
def load_hook(self, state_dict, prefix, *args): | |
if prefix + "wq.weight" in state_dict: | |
wq = state_dict.pop(prefix + "wq.weight") | |
wk = state_dict.pop(prefix + "wk.weight") | |
wv = state_dict.pop(prefix + "wv.weight") | |
state_dict[prefix + "wqkv.weight"] = torch.cat([wq, wk, wv]) | |
def init_kv_cache(self, dtype=None): | |
cache_shape = (self.max_batch_size, self.n_local_kv_heads, self.max_seq_len, self.head_dim) | |
if dtype is None: | |
dtype = getattr(torch, self.precision) | |
if self.attention_type == "self": | |
self.cache_k = torch.zeros(cache_shape, dtype=dtype).cuda() | |
self.cache_v = torch.zeros(cache_shape, dtype=dtype).cuda() | |
def set_inference_flag(self, flag): | |
self.inference = flag | |
if flag and self.attention_type == "self": | |
if self.cache_k is None or self.cache_v is None: | |
self.init_kv_cache() | |
def forward( | |
self, | |
x: torch.Tensor, | |
rope: RotaryPositionEmbedding, | |
input_pos: torch.Tensor, | |
mask: Optional[torch.Tensor] = None, | |
context: Optional[torch.Tensor] = None, | |
): | |
""" | |
Forward pass of GQA. | |
Args: | |
x: The input tensor of shape (batch_size, seq_len, dim). | |
rope: The rotary positional embedding module. | |
input_pos: The starting position of the current sequence. | |
mask: The attention mask tensor. | |
context: The context tensor of shape (batch_size, context_len, dim). | |
Returns: | |
The output tensor after applying GQA. | |
""" | |
bsz, seqlen, _ = x.shape | |
# Use one single module to handle both self-attn and cross-attn | |
context = x if context is None else context | |
context_len = seqlen if context is None else context.shape[1] | |
if self.fuse_qkv: | |
q_size = self.n_local_heads * self.head_dim | |
kv_size = self.n_local_kv_heads * self.head_dim | |
xq, xk, xv = self.wqkv(x).split([q_size, kv_size, kv_size], dim=-1) | |
else: | |
# Compute query, key, and value projections | |
xq = self.wq(x) | |
xk, xv = self.wk(context), self.wv(context) | |
# Reshape projections | |
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim) | |
xk = xk.view(bsz, context_len, self.n_local_kv_heads, self.head_dim) | |
xv = xv.view(bsz, context_len, self.n_local_kv_heads, self.head_dim) | |
# QK normalization | |
if self.use_qk_normalization: | |
xq = self.q_norm(xq) | |
xk = self.k_norm(xk) | |
# Apply rotary positional embeddings to queries and keys | |
# Only apply RoPE to self-attention! | |
if self.attention_type in ["self", "full"]: | |
xq, xk = rope(xq, xk, input_pos, seqlen) | |
xq, xk, xv = map(lambda x: x.transpose(1, 2), (xq, xk, xv)) | |
# xq: (bs, n_local_heads, seqlen, head_dim) | |
# xk: (bs, n_kv_heads, cache_len + context_len, head_dim) | |
# xv: (bs, n_kv_heads, cache_len + context_len, head_dim) | |
if self.inference and self.attention_type == "self": | |
# Update cache with current key and value tensors | |
assert input_pos is not None | |
self.cache_k[:bsz, :, input_pos] = xk | |
self.cache_v[:bsz, :, input_pos] = xv | |
keys, values = ( | |
self.cache_k[:bsz, :, :], | |
self.cache_v[:bsz, :, :], | |
) | |
else: | |
keys, values = xk, xv | |
# Repeat keys and values if necessary | |
keys = keys.repeat_interleave(self.n_rep, dim=1) # (bs, n_local_heads, cache_len + context_len, head_dim) | |
values = values.repeat_interleave(self.n_rep, dim=1) # (bs, n_local_heads, cache_len + context_len, head_dim) | |
if self.attention_type == "self" and self.causal_mask: | |
# During inference, `is_causal` should be set to False when KV cache is pre-computed and used, | |
# since the masking is handled outside this attention module. | |
# During training, `is_causal` should be set to None to use the default behavior of FlashAttention. | |
is_causal = False if self.inference else None | |
else: | |
# This is used for full-attention transformer (e.g., ViT) | |
# also for the cross-attn, it's always full-attn w/o causal | |
is_causal = False | |
output = scaled_dot_product_attention( | |
xq, | |
keys, | |
values, | |
head_dim=self.head_dim, | |
mask=mask, | |
is_causal=is_causal, | |
dropout_p=self.attention_dropout if self.training else 0.0, | |
) | |
output = output.view(bsz, seqlen, -1) | |
output = self.wo(output) | |
if self.inference and self.tp_size > 1: | |
output = funcol.all_reduce(output, "sum", group=parallel_state.get_tensor_model_parallel_group()) | |
return output | |
def init_weights(self, init_std: float): | |
""" | |
Initializes the weights of all modules. | |
""" | |
if self.fuse_qkv: | |
nn.init.trunc_normal_(self.wqkv.weight, mean=0.0, std=0.02) | |
else: | |
for linear in (self.wq, self.wk, self.wv): | |
nn.init.trunc_normal_(linear.weight, mean=0.0, std=0.02) | |
nn.init.trunc_normal_(self.wo.weight, mean=0.0, std=init_std) | |
if self.use_qk_normalization: | |
torch.nn.init.ones_(self.q_norm.weight) | |
torch.nn.init.ones_(self.k_norm.weight) | |
def scaled_dot_product_attention( | |
q: torch.Tensor, | |
k: torch.Tensor, | |
v: torch.Tensor, | |
head_dim: int, | |
mask: Optional[torch.Tensor] = None, | |
is_causal: Optional[bool] = None, | |
dropout_p: float = 0.0, | |
) -> torch.Tensor: | |
""" | |
PyTorch's native implementation of Flash Attention 2. | |
If `is_causal` is given, then the causal attention mask is applied accordingly: | |
- If `is_causal` is True, the standard upper-left causal attention masking is applied. | |
- If `is_causal` is False, no attention mask is applied, unless an explicit mask tensor is | |
provided (i.e., `mask is not None`). | |
If `is_causal` is not given (i.e., `is_causal is None`), then the attention mask is applied | |
based on the provided mask tensor: | |
- If no explicit attention mask is given (i.e., `mask is None`), `is_causal` is set to True, | |
leading to the standard upper-left causal attention masking. | |
- If an attention mask is given (i.e., `mask is not None`), the provided mask is used, | |
and `is_causal` is set to False. | |
Args: | |
q (torch.Tensor): Query tensor | |
k (torch.Tensor): Key tensor | |
v (torch.Tensor): Value tensor | |
head_dim (int): Dimension of each attention head | |
mask (Optional[torch.Tensor], optional): Attention mask. Defaults to None. | |
is_causal (Optional[bool], optional): Whether to apply causal attention mask. Defaults to None. | |
dropout_p (float, optional): Dropout rate. Defaults to 0.0. | |
Returns: | |
torch.Tensor: Output tensor after applying scaled dot-product attention | |
""" | |
scale = 1.0 / math.sqrt(head_dim) | |
if is_causal is None: | |
is_causal = mask is None | |
y = torch.nn.functional.scaled_dot_product_attention( | |
q, | |
k, | |
v, | |
attn_mask=mask, | |
dropout_p=dropout_p, | |
scale=scale, | |
is_causal=is_causal, | |
) | |
return y.transpose(1, 2).contiguous() | |
def enable_different_context_dim_in_te_ca( | |
te_mha_module, | |
context_dim, | |
args, | |
): | |
""" | |
Hijacks the MultiheadAttention (MHA) module from TransformerEngine (TE) to use a different context-dim for KV calculation. | |
""" | |
self = te_mha_module | |
common_gemm_kwargs = { | |
"fuse_wgrad_accumulation": args["fuse_wgrad_accumulation"], | |
"tp_group": self.tp_group, | |
"tp_size": self.tp_size, | |
"get_rng_state_tracker": self.get_rng_state_tracker, | |
"sequence_parallel": self.sequence_parallel, | |
"params_dtype": self.params_dtype, | |
} | |
self.key_value = LinearTE( | |
context_dim, | |
2 * self.hidden_size_kv, | |
init_method=None, | |
bias=args["bias"], | |
return_bias=False, | |
parallel_mode="column" if args["set_parallel_mode"] else None, | |
parameters_split=("key", "value") if not args["fuse_qkv_params"] else None, | |
**common_gemm_kwargs, | |
) | |
def enable_qk_normalization_in_te_mha( | |
te_mha_module, | |
norm_eps: float, | |
is_self_attn: bool = True, | |
): | |
""" | |
Hijacks the MultiheadAttention (MHA) module from TransformerEngine (TE) to use our `te_mha_forward_with_qk_norm`. | |
The `te_mha_forward_with_qk_norm` function is just a copy of the TE MHA's forward function (source code at | |
https://github.com/NVIDIA/TransformerEngine/blob/main/transformer_engine/pytorch/attention.py) with the addition | |
of several lines of code for the QK normalization operations. | |
""" | |
self = te_mha_module | |
# First, we add the QK norm layers (RMSNorm class) to the TE's MHA module in advance for our custom forward function. | |
if is_self_attn: | |
common_kwargs = dict( | |
eps=norm_eps, | |
device=self.layernorm_qkv.layer_norm_weight.device, | |
sequence_parallel=self.layernorm_qkv.sequence_parallel, | |
params_dtype=self.layernorm_qkv.layer_norm_weight.dtype, | |
zero_centered_gamma=self.layernorm_qkv.zero_centered_gamma, | |
) | |
else: | |
common_kwargs = dict( | |
eps=norm_eps, | |
device=self.layernorm_query.query_weight.device, | |
sequence_parallel=self.layernorm_query.sequence_parallel, | |
params_dtype=self.layernorm_query.query_weight.dtype, | |
zero_centered_gamma=self.layernorm_query.zero_centered_gamma, | |
) | |
if parallel_state.model_parallel_is_initialized() and parallel_state.get_tensor_model_parallel_world_size() > 1: | |
tp_group = parallel_state.get_tensor_model_parallel_group() | |
self.q_norm = AllReduceBWDRMSNormTE( | |
self.hidden_size_per_attention_head, process_group=tp_group, **common_kwargs | |
) | |
self.k_norm = AllReduceBWDRMSNormTE( | |
self.hidden_size_per_attention_head, process_group=tp_group, **common_kwargs | |
) | |
else: | |
self.q_norm = RMSNormTE(self.hidden_size_per_attention_head, **common_kwargs) | |
self.k_norm = RMSNormTE(self.hidden_size_per_attention_head, **common_kwargs) | |
# Second, we define the custom forward function for the TE's MHA module, with the QK normalization operations. | |
def te_mha_forward_with_qk_norm( | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]] = None, | |
encoder_output: Optional[torch.Tensor] = None, | |
attn_mask_type: Optional[str] = None, | |
window_size: Optional[Tuple[int, int]] = None, | |
is_first_microbatch: Optional[bool] = None, | |
checkpoint_core_attention: bool = False, | |
inference_params: Optional[Any] = None, | |
rotary_pos_emb: Optional[Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]] = None, | |
core_attention_bias_type: str = "no_bias", | |
core_attention_bias: Optional[torch.Tensor] = None, | |
alibi_slopes: Optional[torch.Tensor] = None, | |
cu_seqlens_q: Optional[torch.Tensor] = None, | |
cu_seqlens_kv: Optional[torch.Tensor] = None, | |
max_seqlen_q: Optional[int] = None, | |
max_seqlen_kv: Optional[int] = None, | |
fast_zero_fill: bool = True, | |
) -> Tuple[Union[torch.Tensor, None], ...]: | |
""" | |
Forward propagation for MultiheadAttention layer. | |
""" | |
# hidden_states: [sq, b, h] | |
if attn_mask_type is None: | |
attn_mask_type = self.attn_mask_type | |
if window_size is None: | |
window_size = self.window_size | |
window_size = check_set_window_size(attn_mask_type, window_size) | |
if "padding" in attn_mask_type and attention_mask is not None: | |
for mask in attention_mask: | |
assert mask.dtype == torch.bool, "Attention mask must be in boolean type!" | |
assert ( | |
core_attention_bias_type in AttnBiasTypes | |
), f"core_attention_bias_type {core_attention_bias_type} is not supported!" | |
# ================================================= | |
# Pre-allocate memory for key-values for inference | |
# ================================================= | |
if inference_params and self.layer_number is not None: | |
if self.layer_number not in inference_params.key_value_memory_dict: | |
inf_max_seq_len = inference_params.max_sequence_length | |
inf_max_batch_size = inference_params.max_batch_size | |
inference_key_memory = self._allocate_memory(inf_max_seq_len, inf_max_batch_size, hidden_states.dtype) | |
inference_value_memory = self._allocate_memory(inf_max_seq_len, inf_max_batch_size, hidden_states.dtype) | |
inference_params.key_value_memory_dict[self.layer_number] = ( | |
inference_key_memory, | |
inference_value_memory, | |
) | |
else: | |
( | |
inference_key_memory, | |
inference_value_memory, | |
) = inference_params.key_value_memory_dict[self.layer_number] | |
# ====================== | |
# Query, Key, and Value | |
# ====================== | |
# fp8_mha = FP8GlobalStateManager.is_fp8_enabled() and FP8GlobalStateManager.get_fp8_recipe().fp8_mha | |
# fp8_kwargs = {"fp8_output": fp8_mha and rotary_pos_emb is None} | |
fp8_kwargs = {} | |
layernorm_output = None | |
if self.attention_type == "self": | |
# Attention heads [sq, b, h] --> [sq, b, ng * (np/ng + 2) * hn] | |
layernorm_qkv_outputs = self.layernorm_qkv( | |
hidden_states, is_first_microbatch=is_first_microbatch, **fp8_kwargs | |
) | |
mixed_x_layer = layernorm_qkv_outputs | |
num_queries_per_key_value = self.num_attention_heads_per_partition // self.num_gqa_groups_per_partition | |
# [sq, b, ng * (np/ng + 2) * hn] --> [sq, b, (np/ng + 2), ng, hn] | |
new_tensor_shape = mixed_x_layer.size()[:-1] + ( | |
(num_queries_per_key_value + 2), | |
self.num_gqa_groups_per_partition, | |
self.hidden_size_per_attention_head, | |
) | |
# split along third last dimension | |
split_dim = -3 | |
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape) | |
# [sq, b, (np/ng + 2), ng, hn] | |
# --> [sq, b, np/ng, np, hn], [sq, b, 1, ng, hn], [sq, b, 1, ng, hn] | |
query_layer, key_layer, value_layer = _SplitAlongDim.apply( | |
mixed_x_layer, split_dim, (num_queries_per_key_value, 1, 1) | |
) | |
# query: -> [sq, b, np, hn] | |
# key, value: -> [sq, b, ng, hn] | |
query_layer, key_layer, value_layer = ( | |
x.reshape(x.size(0), x.size(1), -1, self.hidden_size_per_attention_head) | |
for x in (query_layer, key_layer, value_layer) | |
) | |
elif self.attention_type == "cross": | |
# Attention heads [sk, b, h] --> [sk, b, (ng * 2 * hn)] | |
mixed_kv_layer = self.key_value(encoder_output, is_first_microbatch=is_first_microbatch, **fp8_kwargs) | |
# [sq, b, (ng * 2 * hn)] --> [sq, b, 2 * ng, hn] | |
new_tensor_shape = mixed_kv_layer.size()[:-1] + ( | |
2 * self.num_gqa_groups_per_partition, | |
self.hidden_size_per_attention_head, | |
) | |
# split along second last dimension | |
split_dim = -2 | |
mixed_kv_layer = mixed_kv_layer.view(*new_tensor_shape) | |
# mixed_kv_layer --> 2 [sk, b, ng, hn] | |
key_layer, value_layer = _SplitAlongDim.apply( | |
mixed_kv_layer, | |
split_dim, | |
mixed_kv_layer.shape[split_dim] // 2, | |
) | |
key_layer, value_layer = ( | |
x.reshape( | |
x.size(0), | |
x.size(1), | |
-1, | |
self.hidden_size_per_attention_head, | |
) | |
for x in (key_layer, value_layer) | |
) | |
# Attention head [sq, b, h] --> [sq, b, hp] | |
layernorm_query_outputs = self.layernorm_query( | |
hidden_states, is_first_microbatch=is_first_microbatch, **fp8_kwargs | |
) | |
query_layer = layernorm_query_outputs | |
# [sq, b, hp] --> [sq, b, np, hn] | |
new_tensor_shape = query_layer.size()[:-1] + ( | |
self.num_attention_heads_per_partition, | |
self.hidden_size_per_attention_head, | |
) | |
query_layer = query_layer.view(*new_tensor_shape) | |
# ====================================================== | |
# Apply QK normalization (RMSNorm) | |
# ====================================================== | |
# Must use torch.reshape to flatten the tensor, otherwise an error will be triggered in TE's RMSNorm module. | |
query_layer = self.q_norm(query_layer.reshape(-1, self.hidden_size_per_attention_head)).view(query_layer.shape) | |
key_layer = self.k_norm(key_layer.reshape(-1, self.hidden_size_per_attention_head)).view(key_layer.shape) | |
# ====================================================== | |
# Apply relative positional encoding (rotary embedding) | |
# ====================================================== | |
if rotary_pos_emb is not None: | |
assert not isinstance(query_layer, Float8Tensor) and not isinstance( | |
key_layer, Float8Tensor | |
), "RoPE is not supported for Float8Tensors!" | |
# duplicate the pos_emb for self attention | |
if not isinstance(rotary_pos_emb, tuple): | |
rotary_pos_emb = (rotary_pos_emb,) * 2 | |
q_pos_emb, k_pos_emb = rotary_pos_emb | |
# adjust key and value for inference | |
if inference_params is not None: | |
if self.qkv_format == "sbhd": | |
sequence_length = key_layer.size(0) | |
elif self.qkv_format == "bshd": | |
sequence_length = key_layer.size(1) | |
else: | |
raise ValueError(f"QKV format {self.qkv_format} not supported for KV caching.") | |
sequence_start = inference_params.sequence_len_offset | |
sequence_end = sequence_start + sequence_length | |
q_pos_emb = q_pos_emb[sequence_start:sequence_end, ...] | |
k_pos_emb = k_pos_emb[sequence_start:sequence_end, ...] | |
query_layer = apply_rotary_pos_emb(query_layer, q_pos_emb, self.qkv_format, fused=True) | |
key_layer = apply_rotary_pos_emb(key_layer, k_pos_emb, self.qkv_format, fused=True) | |
# =========================== | |
# Core attention computation | |
# =========================== | |
context_layer = self.core_attention( | |
query_layer, | |
key_layer, | |
value_layer, | |
qkv_format=self.qkv_format, | |
cu_seqlens_q=cu_seqlens_q, | |
cu_seqlens_kv=cu_seqlens_kv, | |
max_seqlen_q=max_seqlen_q, | |
max_seqlen_kv=max_seqlen_kv, | |
attention_mask=attention_mask, | |
attn_mask_type=attn_mask_type, | |
window_size=window_size, | |
checkpoint_core_attention=checkpoint_core_attention, | |
core_attention_bias_type=core_attention_bias_type, | |
core_attention_bias=core_attention_bias, | |
alibi_slopes=alibi_slopes, | |
fast_zero_fill=fast_zero_fill, | |
inference_params=inference_params, | |
) | |
# =================== | |
# Output. [sq, b, h] | |
# =================== | |
projection_output = self.proj( | |
context_layer, | |
is_first_microbatch=is_first_microbatch, | |
) | |
if self.return_bias: | |
attention_output, attention_bias = projection_output | |
else: | |
attention_output, attention_bias = projection_output, None | |
outputs = (attention_output,) | |
if self.return_bias: | |
outputs += (attention_bias,) | |
if self.input_layernorm and self.return_layernorm_output: | |
outputs += (layernorm_output,) | |
return outputs if len(outputs) > 1 else outputs[0] | |
# Finally, we replace the forward method of given TE's MHA module with our custom forward function. | |
self.forward = te_mha_forward_with_qk_norm | |
def create_group_causal_attn_mask( | |
num_temporal_groups: int, num_query_per_group: int, num_key_per_group: int, mode: str = "causal" | |
) -> torch.Tensor: | |
""" | |
Creates a group-based attention mask for scaled dot-product attention with two modes: | |
'causal' and 'group_diagonal'. | |
Parameters: | |
- num_temporal_groups (int): The number of temporal groups (e.g., frames in a video sequence). | |
- num_query_per_group (int): The number of query tokens per temporal group. (e.g., latent tokens in a frame, H x W). | |
- num_key_per_group (int): The number of key tokens per temporal group. (e.g., action tokens per frame). | |
- mode (str): The mode of the attention mask. Options are: | |
- 'causal': Query tokens can attend to key tokens from the same or previous temporal groups. | |
- 'group_diagonal': Query tokens can attend only to key tokens from the same temporal group. | |
Returns: | |
- attn_mask (torch.Tensor): A boolean tensor of shape (L, S), where: | |
- L = num_temporal_groups * num_query_per_group (total number of query tokens) | |
- S = num_temporal_groups * num_key_per_group (total number of key tokens) | |
The mask indicates where attention is allowed (True) and disallowed (False). | |
Example: | |
Input: | |
num_temporal_groups = 3 | |
num_query_per_group = 4 | |
num_key_per_group = 2 | |
Output: | |
Causal Mask Shape: torch.Size([12, 6]) | |
Group Diagonal Mask Shape: torch.Size([12, 6]) | |
if mode='causal': | |
tensor([[ True, True, False, False, False, False], | |
[ True, True, False, False, False, False], | |
[ True, True, False, False, False, False], | |
[ True, True, False, False, False, False], | |
[ True, True, True, True, False, False], | |
[ True, True, True, True, False, False], | |
[ True, True, True, True, False, False], | |
[ True, True, True, True, False, False], | |
[ True, True, True, True, True, True], | |
[ True, True, True, True, True, True], | |
[ True, True, True, True, True, True], | |
[ True, True, True, True, True, True]]) | |
if mode='group_diagonal': | |
tensor([[ True, True, False, False, False, False], | |
[ True, True, False, False, False, False], | |
[ True, True, False, False, False, False], | |
[ True, True, False, False, False, False], | |
[False, False, True, True, False, False], | |
[False, False, True, True, False, False], | |
[False, False, True, True, False, False], | |
[False, False, True, True, False, False], | |
[False, False, False, False, True, True], | |
[False, False, False, False, True, True], | |
[False, False, False, False, True, True], | |
[False, False, False, False, True, True]]) | |
""" | |
assert mode in ["causal", "group_diagonal"], f"Mode {mode} must be 'causal' or 'group_diagonal'" | |
# Total number of query and key tokens | |
total_num_query_tokens = num_temporal_groups * num_query_per_group # Total number of query tokens (L) | |
total_num_key_tokens = num_temporal_groups * num_key_per_group # Total number of key tokens (S) | |
# Generate time indices for query and key tokens (shape: [L] and [S]) | |
query_time_indices = torch.arange(num_temporal_groups).repeat_interleave(num_query_per_group) # Shape: [L] | |
key_time_indices = torch.arange(num_temporal_groups).repeat_interleave(num_key_per_group) # Shape: [S] | |
# Expand dimensions to compute outer comparison | |
query_time_indices = query_time_indices.unsqueeze(1) # Shape: [L, 1] | |
key_time_indices = key_time_indices.unsqueeze(0) # Shape: [1, S] | |
if mode == "causal": | |
# Causal Mode: Query can attend to keys where key_time <= query_time | |
attn_mask = query_time_indices >= key_time_indices # Shape: [L, S] | |
elif mode == "group_diagonal": | |
# Group Diagonal Mode: Query can attend only to keys where key_time == query_time | |
attn_mask = query_time_indices == key_time_indices # Shape: [L, S] | |
assert attn_mask.shape == (total_num_query_tokens, total_num_key_tokens), "Attention mask shape mismatch" | |
return attn_mask | |