Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import torch | |
from omegaconf import DictConfig, OmegaConf | |
class CustomSimpleNamespace: | |
""" | |
A simple namespace class that supports both attribute-style and dictionary-style access. | |
""" | |
def __init__(self, d): | |
self._d = d | |
def __getattr__(self, attr): | |
# Attribute-style access: config.key | |
try: | |
return self._d[attr] | |
except KeyError: | |
raise AttributeError(f"'CustomSimpleNamespace' object has no attribute '{attr}'") | |
def __getitem__(self, key): | |
# Dictionary-style access: config['key'] | |
return self._d[key] | |
def maybe_convert_to_namespace(config): | |
""" | |
This function cast a OmegaConf's DictConfig or a standard dict to CustomSimpleNamespace, which supports both | |
attribute-style and dictionary-style access. | |
Note: We need to convert OmegaConf's DictConfig since it is not compatible with torch.compile. | |
""" | |
# If input is OmegaConf's DictConfig, convert to a standard dict | |
if isinstance(config, DictConfig): | |
config = OmegaConf.to_container(config, resolve=True) | |
if isinstance(config, dict): | |
return CustomSimpleNamespace(config) | |
else: | |
return config | |
def random_dropout(embeddings, drop_rate): | |
r""" | |
Function to perform random dropout for embeddings. | |
When we drop embeddings, we zero them out. | |
Args: | |
embeddings (tensor): Input embeddings | |
drop_rate (float): Rate of dropping the embedding. | |
""" | |
num_samples = embeddings.shape[0] | |
# Create a shape (num_samples, 1, 1, 1, 1, ...) depending on embeddings dim. | |
# This is done to ensure we can broadcast the zero_flag to the embeddings. | |
# embeddings.ndim is 3 for images, and 4 for videos, and the corresponding | |
# shapes are (num_samples, 1, 1) and (num_samples, 1, 1, 1) respectively. | |
tensor_shape = (num_samples,) + tuple([1] * (embeddings.ndim - 1)) | |
zero_flag = torch.ones(tensor_shape).to(embeddings.dtype) * (1 - drop_rate) | |
zero_flag = torch.bernoulli(zero_flag).to(embeddings.device) | |
embeddings = embeddings * zero_flag | |
return embeddings | |