Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import argparse | |
import os | |
import torch | |
from peft import PeftModel | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from cosmos_predict1.auxiliary.guardrail.aegis.categories import UNSAFE_CATEGORIES | |
from cosmos_predict1.auxiliary.guardrail.common.core import ContentSafetyGuardrail, GuardrailRunner | |
from cosmos_predict1.utils import log, misc | |
SAFE = misc.Color.green("SAFE") | |
UNSAFE = misc.Color.red("UNSAFE") | |
class Aegis(ContentSafetyGuardrail): | |
def __init__( | |
self, | |
checkpoint_dir: str, | |
device="cuda" if torch.cuda.is_available() else "cpu", | |
) -> None: | |
self.checkpoint_dir = checkpoint_dir | |
self.device = device | |
self.dtype = torch.bfloat16 | |
base_model_id = "meta-llama/LlamaGuard-7b" | |
aegis_adapter = "nvidia/Aegis-AI-Content-Safety-LlamaGuard-Defensive-1.0" | |
base_model_dir = os.path.join(self.checkpoint_dir, base_model_id) | |
aegis_adapter_dir = os.path.join(self.checkpoint_dir, aegis_adapter) | |
base_model = AutoModelForCausalLM.from_pretrained(base_model_dir) | |
self.tokenizer = AutoTokenizer.from_pretrained(base_model_dir) | |
self.model = PeftModel.from_pretrained(base_model, aegis_adapter_dir) | |
self.model.to(self.device, dtype=self.dtype).eval() | |
def get_moderation_prompt(self, user_prompt: str) -> str: | |
"""Create the moderation prompt for the Aegis model.""" | |
unsafe_categories = "".join([f"{category['instruction']}" for category in UNSAFE_CATEGORIES]) | |
full_prompt = ( | |
"[INST] Task: Check if there is unsafe content in 'User' messages in conversations according our safety policy with the below categories.\n" | |
"<BEGIN UNSAFE CONTENT CATEGORIES>\n" | |
f"{unsafe_categories}\n" | |
"<END UNSAFE CONTENT CATEGORIES>\n" | |
"<BEGIN CONVERSATION>\n" | |
) | |
full_prompt += f"User: {user_prompt}\n\n" | |
full_prompt += """<END CONVERSATION> | |
Provide your safety assessment for User in the above conversation: | |
- First line must read 'safe' or 'unsafe'. | |
- If unsafe, a second line must include a comma-separated list of violated categories. [/INST]""" | |
return full_prompt | |
def get_aegis_block_message(self, moderation_output: str) -> str: | |
"""Extract the blocked category and reason from the Aegis model output.""" | |
block_msg = "Prompt blocked by Aegis." | |
try: | |
# Extract blocked category and reason | |
if len(moderation_output.split("\n")) >= 2: | |
moderation_output_list = moderation_output.split("\n") | |
blocked_category = int(moderation_output_list[1].lstrip("O")) - 1 | |
if 0 <= blocked_category < len(UNSAFE_CATEGORIES): | |
blocked_reason = UNSAFE_CATEGORIES[blocked_category]["blocked_reason"] | |
blocked_category_name = UNSAFE_CATEGORIES[blocked_category]["category"] | |
block_msg = f"{blocked_category_name}: {blocked_reason}" | |
except Exception as e: | |
log.warning(f"Unable to extract blocked category and reason from Aegis output: {e}") | |
return block_msg | |
def filter_aegis_output(self, prompt: str) -> tuple[bool, str]: | |
"""Filter the Aegis model output and return the safety status and message.""" | |
full_prompt = self.get_moderation_prompt(prompt) | |
inputs = self.tokenizer([full_prompt], add_special_tokens=False, return_tensors="pt").to(self.device) | |
output = self.model.generate(**inputs, max_new_tokens=100, pad_token_id=self.tokenizer.eos_token_id) | |
prompt_len = inputs["input_ids"].shape[-1] | |
moderation_output = self.tokenizer.decode(output[0][prompt_len:], skip_special_tokens=True) | |
if "unsafe" in moderation_output.lower(): | |
block_msg = self.get_aegis_block_message(moderation_output) | |
return False, block_msg | |
else: | |
return True, "" | |
def is_safe(self, prompt: str) -> tuple[bool, str]: | |
"""Check if the input prompt is safe according to the Aegis model.""" | |
try: | |
return self.filter_aegis_output(prompt) | |
except Exception as e: | |
log.error(f"Unexpected error occurred when running Aegis guardrail: {e}") | |
return True, "Unexpected error occurred when running Aegis guardrail." | |
def parse_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--prompt", type=str, required=True, help="Input prompt") | |
parser.add_argument( | |
"--checkpoint_dir", | |
type=str, | |
help="Path to the Aegis checkpoint folder", | |
) | |
return parser.parse_args() | |
def main(args): | |
aegis = Aegis(checkpoint_dir=args.checkpoint_dir) | |
runner = GuardrailRunner(safety_models=[aegis]) | |
with misc.timer("aegis safety check"): | |
safety, message = runner.run_safety_check(args.prompt) | |
log.info(f"Input is: {'SAFE' if safety else 'UNSAFE'}") | |
log.info(f"Message: {message}") if not safety else None | |
if __name__ == "__main__": | |
args = parse_args() | |
main(args) | |