Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import List, Tuple, Union | |
import torch | |
import transformers | |
from transformers import T5EncoderModel, T5TokenizerFast | |
from cosmos_predict1.utils import log | |
transformers.logging.set_verbosity_error() | |
class CosmosT5TextEncoder(torch.nn.Module): | |
"""Handles T5 text encoding operations.""" | |
def __init__(self, model_name: str = "google-t5/t5-11b", device: str = "cuda", cache_dir: str = "~/.cache"): | |
"""Initializes the T5 tokenizer and encoder. | |
Args: | |
model_name: The name of the T5 model to use. | |
device: The device to use for computations. | |
""" | |
super().__init__() | |
try: | |
self.tokenizer = T5TokenizerFast.from_pretrained(cache_dir, cache_dir=cache_dir) | |
self.text_encoder = T5EncoderModel.from_pretrained(cache_dir, cache_dir=cache_dir).to(device) | |
except Exception as e: | |
log.warning(f"Failed to load T5 model using cache_dir '{cache_dir}', falling back to default location: {e}") | |
self.tokenizer = T5TokenizerFast.from_pretrained(model_name) | |
self.text_encoder = T5EncoderModel.from_pretrained(model_name).to(device) | |
self.text_encoder.eval() | |
self.device = device | |
def encode_prompts( | |
self, prompts: Union[str, List[str]], max_length: int = 512 | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
"""Encodes text prompts into hidden state representations using a T5 encoder. | |
This function tokenizes the input prompts, processes them through a T5 text encoder, | |
and returns the last hidden states. The encoded outputs beyond the actual sequence | |
length are zero-padded. All prompts in a batch are padded to max_length. | |
Args: | |
prompts: Input text to encode. Can be a single string or a list of strings. | |
max_length: Maximum sequence length for tokenization and padding. Longer | |
sequences will be truncated. Defaults to 512. | |
return_mask: If True, returns the attention mask along with encoded text. | |
Defaults to False. | |
Returns: | |
If return_mask is False: | |
torch.Tensor: Encoded text embeddings of shape (batch_size, max_length, hidden_size). | |
If return_mask is True: | |
tuple[torch.Tensor, torch.Tensor]: A tuple containing: | |
- Encoded text embeddings of shape (batch_size, max_length, hidden_size) | |
- Attention mask of shape (batch_size, max_length) as boolean tensor | |
Raises: | |
ValueError: If the input prompts list is empty. | |
Example: | |
>>> encoder = CosmosT5TextEncoder() | |
>>> prompts = ["Hello world", "Another example"] | |
>>> embeddings = encoder.encode_prompts(prompts, max_length=128) | |
""" | |
if isinstance(prompts, str): | |
prompts = [prompts] | |
if not prompts: | |
raise ValueError("The input prompt list is empty.") | |
batch_encoding = self.tokenizer.batch_encode_plus( | |
prompts, | |
return_tensors="pt", | |
truncation=True, | |
padding="max_length", | |
max_length=max_length, | |
return_length=True, | |
return_offsets_mapping=False, | |
) | |
input_ids = batch_encoding.input_ids.to(self.device) | |
attn_mask = batch_encoding.attention_mask.to(self.device) | |
outputs = self.text_encoder(input_ids=input_ids, attention_mask=attn_mask) | |
encoded_text = outputs.last_hidden_state | |
lengths = attn_mask.sum(dim=1).cpu() | |
for batch_id in range(encoded_text.shape[0]): | |
encoded_text[batch_id][lengths[batch_id] :] = 0 | |
return encoded_text, attn_mask | |