Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import warnings | |
import attrs | |
from cosmos_predict1.utils import log | |
from cosmos_predict1.utils.config import CheckpointConfig as BaseCheckpointConfig | |
from cosmos_predict1.utils.config import make_freezable | |
from cosmos_predict1.utils.fsdp_checkpointer import FSDPCheckpointer as BaseFSDPCheckpointer | |
class CheckpointConfig(BaseCheckpointConfig): | |
load_ema_to_reg: bool = False | |
class FSDPCheckpointer(BaseFSDPCheckpointer): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
if not isinstance(self.config_checkpoint, CheckpointConfig): | |
warnings.warn( | |
"The 'config_checkpoint' is not an instance of 'CheckpointConfig'. " | |
"This behavior is deprecated and will not be supported in future versions. " | |
"Please update 'config_checkpoint' to be of type 'CheckpointConfig'.", | |
DeprecationWarning, | |
) | |
self.load_ema_to_reg = False | |
else: | |
self.load_ema_to_reg = self.config_checkpoint.load_ema_to_reg | |
log.critical(f"load_ema_to_reg: {self.load_ema_to_reg}", rank0_only=False) | |
def load_model_during_init(self, model, is_ema: bool = False, ema_id: int = 0): | |
if self.load_ema_to_reg and is_ema is False: | |
is_ema = True | |
ema_id = 0 | |
log.critical("Loading EMA model to regular model during initialization.", rank0_only=False) | |
super().load_model_during_init(model, is_ema, ema_id) | |