Spaces:
Build error
Build error
GENC3-docker
/
cosmos_predict1
/diffusion
/config
/inference
/cosmos-1-diffusion-world-interpolator.py
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from hydra.core.config_store import ConfigStore | |
from cosmos_predict1.diffusion.networks.general_dit_video_conditioned import VideoExtendGeneralDIT | |
from cosmos_predict1.diffusion.training.modules.edm_sde import EDMSDE | |
from cosmos_predict1.utils.lazy_config import LazyCall as L | |
from cosmos_predict1.utils.lazy_config import LazyDict | |
Cosmos_Predict1_WorldInterpolator_7B: LazyDict = LazyDict( | |
dict( | |
defaults=[ | |
{"override /net": "faditv2_7b"}, | |
{"override /conditioner": "video_cond"}, | |
{"override /tokenizer": "cosmos_diffusion_tokenizer_res720_comp8x8x8_t121_ver092624"}, | |
"_self_", | |
], | |
model=dict( | |
sde=L(EDMSDE)( | |
p_mean=0.0, | |
p_std=1.0, | |
sigma_max=80, | |
sigma_min=0.0002, | |
), | |
input_image_key="images_1024", | |
latent_shape=[ | |
16, | |
4, | |
88, | |
160, | |
], | |
tokenizer=dict( | |
video_vae=dict( | |
pixel_chunk_duration=9, | |
) | |
), | |
vae=dict( # Added VAE field | |
pixel_chunk_duration=9, | |
latent_ch=16, | |
), | |
adjust_video_noise=True, | |
num_latents_to_drop=1, | |
context_parallel_size=1, | |
conditioner=dict( | |
video_cond_bool=dict( | |
condition_location="first_and_last_1", | |
cfg_unconditional_type="zero_condition_region_condition_mask", | |
apply_corruption_to_condition_region="noise_with_sigma", | |
condition_on_augment_sigma=False, | |
dropout_rate=0.0, | |
first_random_n_num_condition_t_max=2, | |
normalize_condition_latent=False, | |
augment_sigma_sample_p_mean=-3.0, | |
augment_sigma_sample_p_std=2.0, | |
augment_sigma_sample_multiplier=1.0, | |
apply_corruption_to_condition_region_sigma_value=[0.001], | |
), | |
text=dict( | |
dropout_rate=0.5, | |
), | |
), | |
net=L(VideoExtendGeneralDIT)( | |
extra_per_block_abs_pos_emb=True, | |
rope_h_extrapolation_ratio=1.0, | |
rope_w_extrapolation_ratio=1.0, | |
rope_t_extrapolation_ratio=2.0, | |
extra_per_block_abs_pos_emb_type="learnable", | |
), | |
), | |
job=dict(group="WorldInterpolator", name="Cosmos_Predict1_WorldInterpolator_7B"), | |
) | |
) | |
Cosmos_Predict1_WorldInterpolator_7B_Post_trained: LazyDict = LazyDict( | |
dict( | |
defaults=[ | |
"/experiment/Cosmos_Predict1_WorldInterpolator_7B", | |
], | |
job=dict( | |
name="Cosmos_Predict1_WorldInterpolator_7B_Post_trained", | |
), | |
) | |
) | |
cs = ConfigStore.instance() | |
for _item in [ | |
Cosmos_Predict1_WorldInterpolator_7B, | |
Cosmos_Predict1_WorldInterpolator_7B_Post_trained, | |
]: | |
cs.store(group="experiment", package="_global_", name=_item["job"]["name"], node=_item) | |