Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import argparse | |
import os | |
import torch | |
from cosmos_predict1.diffusion.inference.inference_utils import ( | |
add_common_arguments, | |
check_input_frames, | |
get_input_sizes, | |
validate_args, | |
) | |
from cosmos_predict1.diffusion.inference.world_generation_pipeline import DiffusionVideo2WorldGenerationPipeline | |
from cosmos_predict1.utils import log, misc | |
from cosmos_predict1.utils.io import read_prompts_from_file, save_video | |
torch.enable_grad(False) | |
def parse_arguments() -> argparse.Namespace: | |
parser = argparse.ArgumentParser(description="Video to world generation demo script") | |
# Add common arguments | |
add_common_arguments(parser) | |
# Add video2world specific arguments | |
parser.add_argument( | |
"--diffusion_transformer_dir", | |
type=str, | |
default="Cosmos-Predict1-7B-Video2World", | |
help="DiT model weights directory name relative to checkpoint_dir", | |
choices=[ | |
"Cosmos-Predict1-7B-Video2World", | |
"Cosmos-Predict1-14B-Video2World", | |
"Cosmos-Predict1-7B-Video2World_post-trained", | |
"Cosmos-Predict1-7B-Video2World_post-trained-4gpu_80gb", | |
"Cosmos-Predict1-7B-Video2World_post-trained-8gpu_40gb", | |
"Cosmos-Predict1-7B-Video2World_post-trained-4gpu_40gb", | |
"Cosmos-Predict1-7B-Video2World_post-trained-lora", | |
"Cosmos-Predict1-14B-Video2World_post-trained", | |
], | |
) | |
parser.add_argument( | |
"--prompt_upsampler_dir", | |
type=str, | |
default="Pixtral-12B", | |
help="Prompt upsampler weights directory relative to checkpoint_dir", | |
) | |
parser.add_argument( | |
"--input_image_or_video_path", | |
type=str, | |
help="Input video/image path for generating a single video", | |
) | |
parser.add_argument( | |
"--num_input_frames", | |
type=int, | |
default=1, | |
help="Number of input frames for video2world prediction", | |
choices=[1, 9], | |
) | |
return parser.parse_args() | |
def demo(args): | |
"""Run video-to-world generation demo. | |
This function handles the main video-to-world generation pipeline, including: | |
- Setting up the random seed for reproducibility | |
- Initializing the generation pipeline with the provided configuration | |
- Processing single or multiple prompts/images/videos from input | |
- Generating videos from prompts and images/videos | |
- Saving the generated videos and corresponding prompts to disk | |
Args: | |
cfg (argparse.Namespace): Configuration namespace containing: | |
- Model configuration (checkpoint paths, model settings) | |
- Generation parameters (guidance, steps, dimensions) | |
- Input/output settings (prompts/images/videos, save paths) | |
- Performance options (model offloading settings) | |
The function will save: | |
- Generated MP4 video files | |
- Text files containing the processed prompts | |
If guardrails block the generation, a critical log message is displayed | |
and the function continues to the next prompt if available. | |
""" | |
misc.set_random_seed(args.seed) | |
inference_type = "video2world" | |
validate_args(args, inference_type) | |
if args.num_gpus > 1: | |
from megatron.core import parallel_state | |
from cosmos_predict1.utils import distributed | |
distributed.init() | |
parallel_state.initialize_model_parallel(context_parallel_size=args.num_gpus) | |
process_group = parallel_state.get_context_parallel_group() | |
# Initialize video2world generation model pipeline | |
pipeline = DiffusionVideo2WorldGenerationPipeline( | |
inference_type=inference_type, | |
checkpoint_dir=args.checkpoint_dir, | |
checkpoint_name=args.diffusion_transformer_dir, | |
prompt_upsampler_dir=args.prompt_upsampler_dir, | |
enable_prompt_upsampler=not args.disable_prompt_upsampler, | |
offload_network=args.offload_diffusion_transformer, | |
offload_tokenizer=args.offload_tokenizer, | |
offload_text_encoder_model=args.offload_text_encoder_model, | |
offload_prompt_upsampler=args.offload_prompt_upsampler, | |
offload_guardrail_models=args.offload_guardrail_models, | |
disable_guardrail=args.disable_guardrail, | |
guidance=args.guidance, | |
num_steps=args.num_steps, | |
height=args.height, | |
width=args.width, | |
fps=args.fps, | |
num_video_frames=args.num_video_frames, | |
seed=args.seed, | |
num_input_frames=args.num_input_frames, | |
) | |
if args.num_gpus > 1: | |
pipeline.model.net.enable_context_parallel(process_group) | |
# Handle multiple prompts if prompt file is provided | |
if args.batch_input_path: | |
log.info(f"Reading batch inputs from path: {args.batch_input_path}") | |
prompts = read_prompts_from_file(args.batch_input_path) | |
else: | |
# Single prompt case | |
prompts = [{"prompt": args.prompt, "visual_input": args.input_image_or_video_path}] | |
os.makedirs(args.video_save_folder, exist_ok=True) | |
for i, input_dict in enumerate(prompts): | |
current_prompt = input_dict.get("prompt", None) | |
if current_prompt is None and args.disable_prompt_upsampler: | |
log.critical("Prompt is missing, skipping world generation.") | |
continue | |
current_image_or_video_path = input_dict.get("visual_input", None) | |
if current_image_or_video_path is None: | |
log.critical("Visual input is missing, skipping world generation.") | |
continue | |
# Check input frames | |
if not check_input_frames(current_image_or_video_path, args.num_input_frames): | |
continue | |
log.warning("Visual input is provided, overriding --height and --width arguments.") | |
args.height, args.width = get_input_sizes(current_image_or_video_path) | |
# Generate video | |
generated_output = pipeline.generate( | |
prompt=current_prompt, | |
image_or_video_path=current_image_or_video_path, | |
negative_prompt=args.negative_prompt, | |
) | |
if generated_output is None: | |
log.critical("Guardrail blocked video2world generation.") | |
continue | |
video, prompt = generated_output | |
if args.batch_input_path: | |
video_save_path = os.path.join(args.video_save_folder, f"{i}.mp4") | |
prompt_save_path = os.path.join(args.video_save_folder, f"{i}.txt") | |
else: | |
video_save_path = os.path.join(args.video_save_folder, f"{args.video_save_name}.mp4") | |
prompt_save_path = os.path.join(args.video_save_folder, f"{args.video_save_name}.txt") | |
# Save video | |
save_video( | |
video=video, | |
fps=args.fps, | |
H=args.height, | |
W=args.width, | |
video_save_quality=5, | |
video_save_path=video_save_path, | |
) | |
# Save prompt to text file alongside video | |
with open(prompt_save_path, "wb") as f: | |
f.write(prompt.encode("utf-8")) | |
log.info(f"Saved video to {video_save_path}") | |
log.info(f"Saved prompt to {prompt_save_path}") | |
# clean up properly | |
if args.num_gpus > 1: | |
parallel_state.destroy_model_parallel() | |
import torch.distributed as dist | |
dist.destroy_process_group() | |
if __name__ == "__main__": | |
args = parse_arguments() | |
demo(args) | |