roll-ai's picture
Upload 381 files
b6af722 verified
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import torch
from cosmos_predict1.diffusion.inference.inference_utils import (
add_common_arguments,
check_input_frames,
get_input_sizes,
validate_args,
)
from cosmos_predict1.diffusion.inference.world_generation_pipeline import DiffusionVideo2WorldGenerationPipeline
from cosmos_predict1.utils import log, misc
from cosmos_predict1.utils.io import read_prompts_from_file, save_video
torch.enable_grad(False)
def parse_arguments() -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Video to world generation demo script")
# Add common arguments
add_common_arguments(parser)
# Add video2world specific arguments
parser.add_argument(
"--diffusion_transformer_dir",
type=str,
default="Cosmos-Predict1-7B-Video2World",
help="DiT model weights directory name relative to checkpoint_dir",
choices=[
"Cosmos-Predict1-7B-Video2World",
"Cosmos-Predict1-14B-Video2World",
"Cosmos-Predict1-7B-Video2World_post-trained",
"Cosmos-Predict1-7B-Video2World_post-trained-4gpu_80gb",
"Cosmos-Predict1-7B-Video2World_post-trained-8gpu_40gb",
"Cosmos-Predict1-7B-Video2World_post-trained-4gpu_40gb",
"Cosmos-Predict1-7B-Video2World_post-trained-lora",
"Cosmos-Predict1-14B-Video2World_post-trained",
],
)
parser.add_argument(
"--prompt_upsampler_dir",
type=str,
default="Pixtral-12B",
help="Prompt upsampler weights directory relative to checkpoint_dir",
)
parser.add_argument(
"--input_image_or_video_path",
type=str,
help="Input video/image path for generating a single video",
)
parser.add_argument(
"--num_input_frames",
type=int,
default=1,
help="Number of input frames for video2world prediction",
choices=[1, 9],
)
return parser.parse_args()
def demo(args):
"""Run video-to-world generation demo.
This function handles the main video-to-world generation pipeline, including:
- Setting up the random seed for reproducibility
- Initializing the generation pipeline with the provided configuration
- Processing single or multiple prompts/images/videos from input
- Generating videos from prompts and images/videos
- Saving the generated videos and corresponding prompts to disk
Args:
cfg (argparse.Namespace): Configuration namespace containing:
- Model configuration (checkpoint paths, model settings)
- Generation parameters (guidance, steps, dimensions)
- Input/output settings (prompts/images/videos, save paths)
- Performance options (model offloading settings)
The function will save:
- Generated MP4 video files
- Text files containing the processed prompts
If guardrails block the generation, a critical log message is displayed
and the function continues to the next prompt if available.
"""
misc.set_random_seed(args.seed)
inference_type = "video2world"
validate_args(args, inference_type)
if args.num_gpus > 1:
from megatron.core import parallel_state
from cosmos_predict1.utils import distributed
distributed.init()
parallel_state.initialize_model_parallel(context_parallel_size=args.num_gpus)
process_group = parallel_state.get_context_parallel_group()
# Initialize video2world generation model pipeline
pipeline = DiffusionVideo2WorldGenerationPipeline(
inference_type=inference_type,
checkpoint_dir=args.checkpoint_dir,
checkpoint_name=args.diffusion_transformer_dir,
prompt_upsampler_dir=args.prompt_upsampler_dir,
enable_prompt_upsampler=not args.disable_prompt_upsampler,
offload_network=args.offload_diffusion_transformer,
offload_tokenizer=args.offload_tokenizer,
offload_text_encoder_model=args.offload_text_encoder_model,
offload_prompt_upsampler=args.offload_prompt_upsampler,
offload_guardrail_models=args.offload_guardrail_models,
disable_guardrail=args.disable_guardrail,
guidance=args.guidance,
num_steps=args.num_steps,
height=args.height,
width=args.width,
fps=args.fps,
num_video_frames=args.num_video_frames,
seed=args.seed,
num_input_frames=args.num_input_frames,
)
if args.num_gpus > 1:
pipeline.model.net.enable_context_parallel(process_group)
# Handle multiple prompts if prompt file is provided
if args.batch_input_path:
log.info(f"Reading batch inputs from path: {args.batch_input_path}")
prompts = read_prompts_from_file(args.batch_input_path)
else:
# Single prompt case
prompts = [{"prompt": args.prompt, "visual_input": args.input_image_or_video_path}]
os.makedirs(args.video_save_folder, exist_ok=True)
for i, input_dict in enumerate(prompts):
current_prompt = input_dict.get("prompt", None)
if current_prompt is None and args.disable_prompt_upsampler:
log.critical("Prompt is missing, skipping world generation.")
continue
current_image_or_video_path = input_dict.get("visual_input", None)
if current_image_or_video_path is None:
log.critical("Visual input is missing, skipping world generation.")
continue
# Check input frames
if not check_input_frames(current_image_or_video_path, args.num_input_frames):
continue
log.warning("Visual input is provided, overriding --height and --width arguments.")
args.height, args.width = get_input_sizes(current_image_or_video_path)
# Generate video
generated_output = pipeline.generate(
prompt=current_prompt,
image_or_video_path=current_image_or_video_path,
negative_prompt=args.negative_prompt,
)
if generated_output is None:
log.critical("Guardrail blocked video2world generation.")
continue
video, prompt = generated_output
if args.batch_input_path:
video_save_path = os.path.join(args.video_save_folder, f"{i}.mp4")
prompt_save_path = os.path.join(args.video_save_folder, f"{i}.txt")
else:
video_save_path = os.path.join(args.video_save_folder, f"{args.video_save_name}.mp4")
prompt_save_path = os.path.join(args.video_save_folder, f"{args.video_save_name}.txt")
# Save video
save_video(
video=video,
fps=args.fps,
H=args.height,
W=args.width,
video_save_quality=5,
video_save_path=video_save_path,
)
# Save prompt to text file alongside video
with open(prompt_save_path, "wb") as f:
f.write(prompt.encode("utf-8"))
log.info(f"Saved video to {video_save_path}")
log.info(f"Saved prompt to {prompt_save_path}")
# clean up properly
if args.num_gpus > 1:
parallel_state.destroy_model_parallel()
import torch.distributed as dist
dist.destroy_process_group()
if __name__ == "__main__":
args = parse_arguments()
demo(args)