Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Optional | |
import torch | |
from megatron.core import parallel_state | |
from torch import Tensor | |
from cosmos_predict1.diffusion.conditioner import VideoExtendCondition | |
from cosmos_predict1.diffusion.model.model_v2w import DiffusionV2WModel, broadcast_condition | |
class DiffusionGen3CModel(DiffusionV2WModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.frame_buffer_max = config.frame_buffer_max | |
self.chunk_size = 121 | |
def encode_warped_frames( | |
self, | |
condition_state: torch.Tensor, | |
condition_state_mask: torch.Tensor, | |
dtype: torch.dtype, | |
): | |
assert condition_state.dim() == 6 | |
condition_state_mask = (condition_state_mask * 2 - 1).repeat(1, 1, 1, 3, 1, 1) | |
latent_condition = [] | |
for i in range(condition_state.shape[2]): | |
current_video_latent = self.encode( | |
condition_state[:, :, i].permute(0, 2, 1, 3, 4).to(dtype) | |
).contiguous() # 1, 16, 8, 88, 160 | |
current_mask_latent = self.encode( | |
condition_state_mask[:, :, i].permute(0, 2, 1, 3, 4).to(dtype) | |
).contiguous() | |
latent_condition.append(current_video_latent) | |
latent_condition.append(current_mask_latent) | |
for _ in range(self.frame_buffer_max - condition_state.shape[2]): | |
latent_condition.append(torch.zeros_like(current_video_latent)) | |
latent_condition.append(torch.zeros_like(current_mask_latent)) | |
latent_condition = torch.cat(latent_condition, dim=1) | |
return latent_condition | |
def _get_conditions( | |
self, | |
data_batch: dict, | |
is_negative_prompt: bool = False, | |
condition_latent: Optional[torch.Tensor] = None, | |
num_condition_t: Optional[int] = None, | |
add_input_frames_guidance: bool = False, | |
): | |
"""Get the conditions for the model. | |
Args: | |
data_batch: Input data dictionary | |
is_negative_prompt: Whether to use negative prompting | |
condition_latent: Conditioning frames tensor (B,C,T,H,W) | |
num_condition_t: Number of frames to condition on | |
add_input_frames_guidance: Whether to apply guidance to input frames | |
Returns: | |
condition: Input conditions | |
uncondition: Conditions removed/reduced to minimum (unconditioned) | |
""" | |
if is_negative_prompt: | |
condition, uncondition = self.conditioner.get_condition_with_negative_prompt(data_batch) | |
else: | |
condition, uncondition = self.conditioner.get_condition_uncondition(data_batch) | |
# encode warped frames | |
condition_state, condition_state_mask = ( | |
data_batch["condition_state"], | |
data_batch["condition_state_mask"], | |
) | |
latent_condition = self.encode_warped_frames( | |
condition_state, condition_state_mask, self.tensor_kwargs["dtype"] | |
) | |
condition.video_cond_bool = True | |
condition = self.add_condition_video_indicator_and_video_input_mask( | |
condition_latent, condition, num_condition_t | |
) | |
condition = self.add_condition_pose(latent_condition, condition) | |
uncondition.video_cond_bool = False if add_input_frames_guidance else True | |
uncondition = self.add_condition_video_indicator_and_video_input_mask( | |
condition_latent, uncondition, num_condition_t | |
) | |
uncondition = self.add_condition_pose(latent_condition, uncondition, drop_out_latent = True) | |
assert condition.gt_latent.allclose(uncondition.gt_latent) | |
# For inference, check if parallel_state is initialized | |
to_cp = self.net.is_context_parallel_enabled | |
if parallel_state.is_initialized(): | |
condition = broadcast_condition(condition, to_tp=False, to_cp=to_cp) | |
uncondition = broadcast_condition(uncondition, to_tp=False, to_cp=to_cp) | |
return condition, uncondition | |
def add_condition_pose(self, latent_condition: torch.Tensor, condition: VideoExtendCondition, | |
drop_out_latent: bool = False) -> VideoExtendCondition: | |
"""Add pose condition to the condition object. For camera control model | |
Args: | |
data_batch (Dict): data batch, with key "plucker_embeddings", in shape B,T,C,H,W | |
latent_state (torch.Tensor): latent state tensor in shape B,C,T,H,W | |
condition (VideoExtendCondition): condition object | |
num_condition_t (int): number of condition latent T, used in inference to decide the condition region and config.conditioner.video_cond_bool.condition_location == "first_n" | |
Returns: | |
VideoExtendCondition: updated condition object | |
""" | |
if drop_out_latent: | |
condition.condition_video_pose = torch.zeros_like(latent_condition.contiguous()) | |
else: | |
condition.condition_video_pose = latent_condition.contiguous() | |
to_cp = self.net.is_context_parallel_enabled | |
# For inference, check if parallel_state is initialized | |
if parallel_state.is_initialized(): | |
condition = broadcast_condition(condition, to_tp=True, to_cp=to_cp) | |
else: | |
assert not to_cp, "parallel_state is not initialized, context parallel should be turned off." | |
return condition | |