roll-ai's picture
Upload 381 files
b6af722 verified
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from megatron.core import parallel_state
from torch import Tensor
from torch.distributed import ProcessGroup, all_gather, broadcast_object_list, get_process_group_ranks, get_world_size
from torch.distributed.utils import _verify_param_shape_across_processes
from cosmos_predict1.utils import distributed
def split_inputs_cp(x: Tensor, seq_dim: int, cp_group: ProcessGroup) -> Tensor:
"""
Split input tensor along the sequence dimension for checkpoint parallelism.
This function divides the input tensor into equal parts along the specified
sequence dimension, based on the number of ranks in the checkpoint parallelism group.
It then selects the part corresponding to the current rank.
Args:
x: Input tensor to be split.
seq_dim: The dimension along which to split the input (sequence dimension).
cp_group: The process group for checkpoint parallelism.
Returns:
A slice of the input tensor corresponding to the current rank.
Raises:
AssertionError: If the sequence dimension is not divisible by the number of ranks.
"""
cp_ranks = get_process_group_ranks(cp_group)
cp_size = len(cp_ranks)
assert x.shape[seq_dim] % cp_size == 0, f"{x.shape[seq_dim]} cannot divide cp_size {cp_size}"
x = x.view(*x.shape[:seq_dim], cp_size, x.shape[seq_dim] // cp_size, *x.shape[(seq_dim + 1) :])
seq_idx = torch.tensor([cp_group.rank()], device=x.device)
x = x.index_select(seq_dim, seq_idx)
# Note that the new sequence length is the original sequence length / cp_size
x = x.view(*x.shape[:seq_dim], -1, *x.shape[(seq_dim + 2) :])
return x
def cat_outputs_cp(x: Tensor, seq_dim: int, cp_group: ProcessGroup) -> Tensor:
"""
Concatenate outputs from different ranks in the checkpoint parallelism group.
This function gathers tensors from all ranks in the checkpoint parallelism group
and concatenates them along the specified sequence dimension.
Args:
x: Input tensor to be concatenated.
seq_dim: The dimension along which to concatenate the tensors (sequence dimension).
cp_group: The process group for checkpoint parallelism.
Returns:
A tensor that is the concatenation of tensors from all ranks in the cp_group.
Raises:
RuntimeError: If the gather operation fails.
"""
# Get the world size (number of processes in the group)
world_size = get_world_size(cp_group)
# Create a list to store tensors from all ranks
gathered_tensors = [torch.zeros_like(x) for _ in range(world_size)]
# Gather tensors from all ranks
try:
all_gather(gathered_tensors, x, group=cp_group)
except RuntimeError as e:
raise RuntimeError(f"Failed to gather tensors: {e}")
# Concatenate the gathered tensors along the specified dimension
return torch.cat(gathered_tensors, dim=seq_dim)
def broadcast(item: torch.Tensor | str | None, to_tp: bool = True, to_cp: bool = True) -> torch.Tensor | str | None:
"""
Broadcast the item from the minimum rank in the specified group(s).
Since global rank = tp_rank + cp_rank * tp_size + ...
First broadcast in the tp_group and then in the cp_group will
ensure that the item is broadcasted across ranks in cp_group and tp_group.
Parameters:
- item: The item to broadcast (can be a torch.Tensor, str, or None).
- to_tp: Whether to broadcast to the tensor model parallel group.
- to_cp: Whether to broadcast to the context parallel group.
"""
if not parallel_state.is_initialized():
return item
tp_group = parallel_state.get_tensor_model_parallel_group()
cp_group = parallel_state.get_context_parallel_group()
to_tp = to_tp and parallel_state.get_tensor_model_parallel_world_size() > 1
to_cp = to_cp and parallel_state.get_context_parallel_world_size() > 1
if to_tp:
min_tp_rank = min(get_process_group_ranks(tp_group))
if to_cp:
min_cp_rank = min(get_process_group_ranks(cp_group))
if isinstance(item, torch.Tensor): # assume the device is cuda
# log.info(f"{item.shape}", rank0_only=False)
if to_tp:
# torch.distributed.broadcast(item, min_tp_rank, group=tp_group)
item = _robust_broadcast(item, min_tp_rank, tp_group)
if to_cp:
# torch.distributed.broadcast(item, min_cp_rank, group=cp_group)
item = _robust_broadcast(item, min_cp_rank, cp_group)
elif item is not None:
broadcastable_list = [item]
if to_tp:
# log.info(f"{broadcastable_list}", rank0_only=False)
broadcast_object_list(broadcastable_list, min_tp_rank, group=tp_group)
if to_cp:
broadcast_object_list(broadcastable_list, min_cp_rank, group=cp_group)
item = broadcastable_list[0]
return item
def _robust_broadcast(tensor: torch.Tensor, src: int, pg, is_check_shape: bool = False) -> torch.Tensor:
"""
Perform a robust broadcast operation that works regardless of tensor shapes on different ranks.
Args:
tensor (torch.Tensor): The tensor to broadcast (on src rank) or receive (on other ranks).
src (int): The source rank for the broadcast. Defaults to 0.
Returns:
torch.Tensor: The broadcasted tensor on all ranks.
"""
# First, broadcast the shape of the tensor
if distributed.get_rank() == src:
shape = torch.tensor(tensor.shape).cuda()
else:
shape = torch.empty(tensor.dim(), dtype=torch.long).cuda()
if is_check_shape:
_verify_param_shape_across_processes(pg, [shape])
torch.distributed.broadcast(shape, src, group=pg)
# Resize the tensor on non-src ranks if necessary
if distributed.get_rank() != src:
tensor = tensor.new_empty(shape.tolist()).type_as(tensor)
# Now broadcast the tensor data
torch.distributed.broadcast(tensor, src, group=pg)
return tensor