roll-ai's picture
Upload 381 files
b6af722 verified
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A general implementation of adaln-modulated VIT-like~(DiT) transformer for video processing.
"""
from typing import List, Optional, Tuple
import torch
from einops import rearrange
from torch import nn
from torch.distributed import ProcessGroup, get_process_group_ranks
from torchvision import transforms
from cosmos_predict1.diffusion.conditioner import DataType
from cosmos_predict1.diffusion.module.attention import get_normalization
from cosmos_predict1.diffusion.module.blocks import (
FinalLayer,
GeneralDITTransformerBlock,
PatchEmbed,
TimestepEmbedding,
Timesteps,
)
from cosmos_predict1.diffusion.module.position_embedding import LearnablePosEmbAxis, VideoRopePosition3DEmb
from cosmos_predict1.utils import log
class GeneralDIT(nn.Module):
"""
A general implementation of adaln-modulated VIT-like~(DiT) transformer for video processing.
Args:
max_img_h (int): Maximum height of the input images.
max_img_w (int): Maximum width of the input images.
max_frames (int): Maximum number of frames in the video sequence.
in_channels (int): Number of input channels (e.g., RGB channels for color images).
out_channels (int): Number of output channels.
patch_spatial (tuple): Spatial resolution of patches for input processing.
patch_temporal (int): Temporal resolution of patches for input processing.
concat_padding_mask (bool): If True, includes a mask channel in the input to handle padding.
block_config (str): Configuration of the transformer block. See Notes for supported block types.
model_channels (int): Base number of channels used throughout the model.
num_blocks (int): Number of transformer blocks.
num_heads (int): Number of heads in the multi-head attention layers.
mlp_ratio (float): Expansion ratio for MLP blocks.
block_x_format (str): Format of input tensor for transformer blocks ('BTHWD' or 'THWBD').
crossattn_emb_channels (int): Number of embedding channels for cross-attention.
use_cross_attn_mask (bool): Whether to use mask in cross-attention.
pos_emb_cls (str): Type of positional embeddings.
pos_emb_learnable (bool): Whether positional embeddings are learnable.
pos_emb_interpolation (str): Method for interpolating positional embeddings.
affline_emb_norm (bool): Whether to normalize affine embeddings.
use_adaln_lora (bool): Whether to use AdaLN-LoRA.
adaln_lora_dim (int): Dimension for AdaLN-LoRA.
rope_h_extrapolation_ratio (float): Height extrapolation ratio for RoPE.
rope_w_extrapolation_ratio (float): Width extrapolation ratio for RoPE.
rope_t_extrapolation_ratio (float): Temporal extrapolation ratio for RoPE.
extra_per_block_abs_pos_emb (bool): Whether to use extra per-block absolute positional embeddings.
extra_per_block_abs_pos_emb_type (str): Type of extra per-block positional embeddings.
extra_h_extrapolation_ratio (float): Height extrapolation ratio for extra embeddings.
extra_w_extrapolation_ratio (float): Width extrapolation ratio for extra embeddings.
extra_t_extrapolation_ratio (float): Temporal extrapolation ratio for extra embeddings.
Notes:
Supported block types in block_config:
* cross_attn, ca: Cross attention
* full_attn: Full attention on all flattened tokens
* mlp, ff: Feed forward block
"""
def __init__(
self,
max_img_h: int,
max_img_w: int,
max_frames: int,
in_channels: int,
out_channels: int,
patch_spatial: tuple,
patch_temporal: int,
concat_padding_mask: bool = True,
# attention settings
block_config: str = "FA-CA-MLP",
model_channels: int = 768,
num_blocks: int = 10,
num_heads: int = 16,
mlp_ratio: float = 4.0,
block_x_format: str = "BTHWD",
# cross attention settings
crossattn_emb_channels: int = 1024,
use_cross_attn_mask: bool = False,
# positional embedding settings
pos_emb_cls: str = "sincos",
pos_emb_learnable: bool = False,
pos_emb_interpolation: str = "crop",
affline_emb_norm: bool = False, # whether or not to normalize the affine embedding
use_adaln_lora: bool = False,
adaln_lora_dim: int = 256,
rope_h_extrapolation_ratio: float = 1.0,
rope_w_extrapolation_ratio: float = 1.0,
rope_t_extrapolation_ratio: float = 1.0,
extra_per_block_abs_pos_emb: bool = True,
extra_per_block_abs_pos_emb_type: str = "learnable",
extra_h_extrapolation_ratio: float = 1.0,
extra_w_extrapolation_ratio: float = 1.0,
extra_t_extrapolation_ratio: float = 1.0,
) -> None:
super().__init__()
self.max_img_h = max_img_h
self.max_img_w = max_img_w
self.max_frames = max_frames
self.in_channels = in_channels
self.out_channels = out_channels
self.patch_spatial = patch_spatial
self.patch_temporal = patch_temporal
self.num_heads = num_heads
self.num_blocks = num_blocks
self.model_channels = model_channels
self.use_cross_attn_mask = use_cross_attn_mask
self.concat_padding_mask = concat_padding_mask
# positional embedding settings
self.pos_emb_cls = pos_emb_cls
self.pos_emb_learnable = pos_emb_learnable
self.pos_emb_interpolation = pos_emb_interpolation
self.affline_emb_norm = affline_emb_norm
self.rope_h_extrapolation_ratio = rope_h_extrapolation_ratio
self.rope_w_extrapolation_ratio = rope_w_extrapolation_ratio
self.rope_t_extrapolation_ratio = rope_t_extrapolation_ratio
self.extra_per_block_abs_pos_emb = extra_per_block_abs_pos_emb
self.extra_per_block_abs_pos_emb_type = extra_per_block_abs_pos_emb_type.lower()
self.extra_h_extrapolation_ratio = extra_h_extrapolation_ratio
self.extra_w_extrapolation_ratio = extra_w_extrapolation_ratio
self.extra_t_extrapolation_ratio = extra_t_extrapolation_ratio
self.build_patch_embed()
self.build_pos_embed()
self.cp_group = None
self.block_x_format = block_x_format
self.use_adaln_lora = use_adaln_lora
self.adaln_lora_dim = adaln_lora_dim
self.t_embedder = nn.Sequential(
Timesteps(model_channels),
TimestepEmbedding(model_channels, model_channels, use_adaln_lora=use_adaln_lora),
)
self.blocks = nn.ModuleDict()
for idx in range(num_blocks):
self.blocks[f"block{idx}"] = GeneralDITTransformerBlock(
x_dim=model_channels,
context_dim=crossattn_emb_channels,
num_heads=num_heads,
block_config=block_config,
mlp_ratio=mlp_ratio,
x_format=self.block_x_format,
use_adaln_lora=use_adaln_lora,
adaln_lora_dim=adaln_lora_dim,
)
self.build_decode_head()
if self.affline_emb_norm:
log.debug("Building affine embedding normalization layer")
self.affline_norm = get_normalization("R", model_channels)
else:
self.affline_norm = nn.Identity()
self.initialize_weights()
def initialize_weights(self):
# Initialize transformer layers:
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# Initialize timestep embedding
nn.init.normal_(self.t_embedder[1].linear_1.weight, std=0.02)
if self.t_embedder[1].linear_1.bias is not None:
nn.init.constant_(self.t_embedder[1].linear_1.bias, 0)
nn.init.normal_(self.t_embedder[1].linear_2.weight, std=0.02)
if self.t_embedder[1].linear_2.bias is not None:
nn.init.constant_(self.t_embedder[1].linear_2.bias, 0)
# Zero-out adaLN modulation layers in DiT blocks:
for transformer_block in self.blocks.values():
for block in transformer_block.blocks:
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
if block.adaLN_modulation[-1].bias is not None:
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
def build_decode_head(self):
self.final_layer = FinalLayer(
hidden_size=self.model_channels,
spatial_patch_size=self.patch_spatial,
temporal_patch_size=self.patch_temporal,
out_channels=self.out_channels,
use_adaln_lora=self.use_adaln_lora,
adaln_lora_dim=self.adaln_lora_dim,
)
def build_patch_embed(self):
(
concat_padding_mask,
in_channels,
patch_spatial,
patch_temporal,
model_channels,
) = (
self.concat_padding_mask,
self.in_channels,
self.patch_spatial,
self.patch_temporal,
self.model_channels,
)
in_channels = in_channels + 1 if concat_padding_mask else in_channels
self.x_embedder = PatchEmbed(
spatial_patch_size=patch_spatial,
temporal_patch_size=patch_temporal,
in_channels=in_channels,
out_channels=model_channels,
bias=False,
)
def build_pos_embed(self):
if self.pos_emb_cls == "rope3d":
cls_type = VideoRopePosition3DEmb
else:
raise ValueError(f"Unknown pos_emb_cls {self.pos_emb_cls}")
log.debug(f"Building positional embedding with {self.pos_emb_cls} class, impl {cls_type}")
kwargs = dict(
model_channels=self.model_channels,
len_h=self.max_img_h // self.patch_spatial,
len_w=self.max_img_w // self.patch_spatial,
len_t=self.max_frames // self.patch_temporal,
is_learnable=self.pos_emb_learnable,
interpolation=self.pos_emb_interpolation,
head_dim=self.model_channels // self.num_heads,
h_extrapolation_ratio=self.rope_h_extrapolation_ratio,
w_extrapolation_ratio=self.rope_w_extrapolation_ratio,
t_extrapolation_ratio=self.rope_t_extrapolation_ratio,
)
self.pos_embedder = cls_type(
**kwargs,
)
assert self.extra_per_block_abs_pos_emb is True, "extra_per_block_abs_pos_emb must be True"
if self.extra_per_block_abs_pos_emb:
assert self.extra_per_block_abs_pos_emb_type in [
"learnable",
], f"Unknown extra_per_block_abs_pos_emb_type {self.extra_per_block_abs_pos_emb_type}"
kwargs["h_extrapolation_ratio"] = self.extra_h_extrapolation_ratio
kwargs["w_extrapolation_ratio"] = self.extra_w_extrapolation_ratio
kwargs["t_extrapolation_ratio"] = self.extra_t_extrapolation_ratio
self.extra_pos_embedder = LearnablePosEmbAxis(**kwargs)
def prepare_embedded_sequence(
self,
x_B_C_T_H_W: torch.Tensor,
fps: Optional[torch.Tensor] = None,
padding_mask: Optional[torch.Tensor] = None,
latent_condition: Optional[torch.Tensor] = None,
latent_condition_sigma: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
"""
Prepares an embedded sequence tensor by applying positional embeddings and handling padding masks.
Args:
x_B_C_T_H_W (torch.Tensor): video
fps (Optional[torch.Tensor]): Frames per second tensor to be used for positional embedding when required.
If None, a default value (`self.base_fps`) will be used.
padding_mask (Optional[torch.Tensor]): current it is not used
Returns:
Tuple[torch.Tensor, Optional[torch.Tensor]]:
- A tensor of shape (B, T, H, W, D) with the embedded sequence.
- An optional positional embedding tensor, returned only if the positional embedding class
(`self.pos_emb_cls`) includes 'rope'. Otherwise, None.
Notes:
- If `self.concat_padding_mask` is True, a padding mask channel is concatenated to the input tensor.
- The method of applying positional embeddings depends on the value of `self.pos_emb_cls`.
- If 'rope' is in `self.pos_emb_cls` (case insensitive), the positional embeddings are generated using
the `self.pos_embedder` with the shape [T, H, W].
- If "fps_aware" is in `self.pos_emb_cls`, the positional embeddings are generated using the
`self.pos_embedder` with the fps tensor.
- Otherwise, the positional embeddings are generated without considering fps.
"""
if self.concat_padding_mask:
padding_mask = transforms.functional.resize(
padding_mask, list(x_B_C_T_H_W.shape[-2:]), interpolation=transforms.InterpolationMode.NEAREST
)
x_B_C_T_H_W = torch.cat(
[x_B_C_T_H_W, padding_mask.unsqueeze(1).repeat(1, 1, x_B_C_T_H_W.shape[2], 1, 1)], dim=1
)
x_B_T_H_W_D = self.x_embedder(x_B_C_T_H_W)
if self.extra_per_block_abs_pos_emb:
extra_pos_emb = self.extra_pos_embedder(x_B_T_H_W_D, fps=fps)
else:
extra_pos_emb = None
if "rope" in self.pos_emb_cls.lower():
return x_B_T_H_W_D, self.pos_embedder(x_B_T_H_W_D, fps=fps), extra_pos_emb
if "fps_aware" in self.pos_emb_cls:
x_B_T_H_W_D = x_B_T_H_W_D + self.pos_embedder(x_B_T_H_W_D, fps=fps) # [B, T, H, W, D]
else:
x_B_T_H_W_D = x_B_T_H_W_D + self.pos_embedder(x_B_T_H_W_D) # [B, T, H, W, D]
return x_B_T_H_W_D, None, extra_pos_emb
def decoder_head(
self,
x_B_T_H_W_D: torch.Tensor,
emb_B_D: torch.Tensor,
crossattn_emb: torch.Tensor,
origin_shape: Tuple[int, int, int, int, int], # [B, C, T, H, W]
crossattn_mask: Optional[torch.Tensor] = None,
adaln_lora_B_3D: Optional[torch.Tensor] = None,
) -> torch.Tensor:
del crossattn_emb, crossattn_mask
B, C, T_before_patchify, H_before_patchify, W_before_patchify = origin_shape
x_BT_HW_D = rearrange(x_B_T_H_W_D, "B T H W D -> (B T) (H W) D")
x_BT_HW_D = self.final_layer(x_BT_HW_D, emb_B_D, adaln_lora_B_3D=adaln_lora_B_3D)
# This is to ensure x_BT_HW_D has the correct shape because
# when we merge T, H, W into one dimension, x_BT_HW_D has shape (B * T * H * W, 1*1, D).
x_BT_HW_D = x_BT_HW_D.view(
B * T_before_patchify // self.patch_temporal,
H_before_patchify // self.patch_spatial * W_before_patchify // self.patch_spatial,
-1,
)
x_B_D_T_H_W = rearrange(
x_BT_HW_D,
"(B T) (H W) (p1 p2 t C) -> B C (T t) (H p1) (W p2)",
p1=self.patch_spatial,
p2=self.patch_spatial,
H=H_before_patchify // self.patch_spatial,
W=W_before_patchify // self.patch_spatial,
t=self.patch_temporal,
B=B,
)
return x_B_D_T_H_W
def forward_before_blocks(
self,
x: torch.Tensor,
timesteps: torch.Tensor,
crossattn_emb: torch.Tensor,
crossattn_mask: Optional[torch.Tensor] = None,
fps: Optional[torch.Tensor] = None,
image_size: Optional[torch.Tensor] = None,
padding_mask: Optional[torch.Tensor] = None,
scalar_feature: Optional[torch.Tensor] = None,
data_type: Optional[DataType] = DataType.VIDEO,
latent_condition: Optional[torch.Tensor] = None,
latent_condition_sigma: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
"""
Args:
x: (B, C, T, H, W) tensor of spatial-temp inputs
timesteps: (B, ) tensor of timesteps
crossattn_emb: (B, N, D) tensor of cross-attention embeddings
crossattn_mask: (B, N) tensor of cross-attention masks
"""
del kwargs
assert isinstance(
data_type, DataType
), f"Expected DataType, got {type(data_type)}. We need discuss this flag later."
original_shape = x.shape
x_B_T_H_W_D, rope_emb_L_1_1_D, extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = self.prepare_embedded_sequence(
x,
fps=fps,
padding_mask=padding_mask,
latent_condition=latent_condition,
latent_condition_sigma=latent_condition_sigma,
)
# logging affline scale information
affline_scale_log_info = {}
timesteps_B_D, adaln_lora_B_3D = self.t_embedder(timesteps.flatten())
affline_emb_B_D = timesteps_B_D
affline_scale_log_info["timesteps_B_D"] = timesteps_B_D.detach()
if scalar_feature is not None:
raise NotImplementedError("Scalar feature is not implemented yet.")
affline_scale_log_info["affline_emb_B_D"] = affline_emb_B_D.detach()
affline_emb_B_D = self.affline_norm(affline_emb_B_D)
if self.use_cross_attn_mask:
crossattn_mask = crossattn_mask[:, None, None, :].to(dtype=torch.bool) # [B, 1, 1, length]
else:
crossattn_mask = None
if self.blocks["block0"].x_format == "THWBD":
x = rearrange(x_B_T_H_W_D, "B T H W D -> T H W B D")
if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None:
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = rearrange(
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, "B T H W D -> T H W B D"
)
crossattn_emb = rearrange(crossattn_emb, "B M D -> M B D")
if crossattn_mask:
crossattn_mask = rearrange(crossattn_mask, "B M -> M B")
elif self.blocks["block0"].x_format == "BTHWD":
x = x_B_T_H_W_D
else:
raise ValueError(f"Unknown x_format {self.blocks[0].x_format}")
output = {
"x": x,
"affline_emb_B_D": affline_emb_B_D,
"crossattn_emb": crossattn_emb,
"crossattn_mask": crossattn_mask,
"rope_emb_L_1_1_D": rope_emb_L_1_1_D,
"adaln_lora_B_3D": adaln_lora_B_3D,
"original_shape": original_shape,
"extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D": extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D,
}
return output
def forward(
self,
x: torch.Tensor,
timesteps: torch.Tensor,
crossattn_emb: torch.Tensor,
crossattn_mask: Optional[torch.Tensor] = None,
fps: Optional[torch.Tensor] = None,
image_size: Optional[torch.Tensor] = None,
padding_mask: Optional[torch.Tensor] = None,
scalar_feature: Optional[torch.Tensor] = None,
data_type: Optional[DataType] = DataType.VIDEO,
latent_condition: Optional[torch.Tensor] = None,
latent_condition_sigma: Optional[torch.Tensor] = None,
condition_video_augment_sigma: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor | List[torch.Tensor] | Tuple[torch.Tensor, List[torch.Tensor]]:
"""
Args:
x: (B, C, T, H, W) tensor of spatial-temp inputs
timesteps: (B, ) tensor of timesteps
crossattn_emb: (B, N, D) tensor of cross-attention embeddings
crossattn_mask: (B, N) tensor of cross-attention masks
condition_video_augment_sigma: (B,) used in lvg(long video generation), we add noise with this sigma to
augment condition input, the lvg model will condition on the condition_video_augment_sigma value;
we need forward_before_blocks pass to the forward_before_blocks function.
"""
inputs = self.forward_before_blocks(
x=x,
timesteps=timesteps,
crossattn_emb=crossattn_emb,
crossattn_mask=crossattn_mask,
fps=fps,
image_size=image_size,
padding_mask=padding_mask,
scalar_feature=scalar_feature,
data_type=data_type,
latent_condition=latent_condition,
latent_condition_sigma=latent_condition_sigma,
condition_video_augment_sigma=condition_video_augment_sigma,
**kwargs,
)
x, affline_emb_B_D, crossattn_emb, crossattn_mask, rope_emb_L_1_1_D, adaln_lora_B_3D, original_shape = (
inputs["x"],
inputs["affline_emb_B_D"],
inputs["crossattn_emb"],
inputs["crossattn_mask"],
inputs["rope_emb_L_1_1_D"],
inputs["adaln_lora_B_3D"],
inputs["original_shape"],
)
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = inputs["extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D"]
if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None:
assert (
x.shape == extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.shape
), f"{x.shape} != {extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.shape} {original_shape}"
for _, block in self.blocks.items():
assert (
self.blocks["block0"].x_format == block.x_format
), f"First block has x_format {self.blocks[0].x_format}, got {block.x_format}"
x = block(
x,
affline_emb_B_D,
crossattn_emb,
crossattn_mask,
rope_emb_L_1_1_D=rope_emb_L_1_1_D,
adaln_lora_B_3D=adaln_lora_B_3D,
extra_per_block_pos_emb=extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D,
)
x_B_T_H_W_D = rearrange(x, "T H W B D -> B T H W D")
x_B_D_T_H_W = self.decoder_head(
x_B_T_H_W_D=x_B_T_H_W_D,
emb_B_D=affline_emb_B_D,
crossattn_emb=None,
origin_shape=original_shape,
crossattn_mask=None,
adaln_lora_B_3D=adaln_lora_B_3D,
)
return x_B_D_T_H_W
def enable_context_parallel(self, cp_group: ProcessGroup):
cp_ranks = get_process_group_ranks(cp_group)
cp_size = len(cp_ranks)
# Set these attributes for spliting the data after embedding.
self.cp_group = cp_group
# Set these attributes for computing the loss.
self.cp_size = cp_size
self.pos_embedder.enable_context_parallel(cp_group)
if self.extra_per_block_abs_pos_emb:
self.extra_pos_embedder.enable_context_parallel(cp_group)
# Loop through the model to set up context parallel.
for block in self.blocks.values():
for layer in block.blocks:
if layer.block_type in ["mlp", "ff", "cross_attn", "ca"]:
continue
elif layer.block.attn.backend == "transformer_engine":
layer.block.attn.attn_op.set_context_parallel_group(cp_group, cp_ranks, torch.cuda.Stream())
log.debug(f"[CP] Enable context parallelism with size {cp_size}")
def disable_context_parallel(self):
self.cp_group = None
self.cp_size = None
self.pos_embedder.disable_context_parallel()
if self.extra_per_block_abs_pos_emb:
self.extra_pos_embedder.disable_context_parallel()
# Loop through the model to disable context parallel.
for block in self.blocks.values():
for layer in block.blocks:
if layer.block_type in ["mlp", "ff"]:
continue
elif layer.block_type in ["cross_attn", "ca"]:
continue
else:
layer.block.attn.attn_op.cp_group = None
layer.block.attn.attn_op.cp_ranks = None
layer.block.attn.attn_op.cp_stream = None
log.debug("[CP] Disable context parallelism.")
@property
def is_context_parallel_enabled(self):
return self.cp_group is not None