Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass | |
from typing import Tuple | |
import torch | |
from megatron.core import parallel_state | |
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP | |
from cosmos_predict1.utils import distributed | |
from cosmos_predict1.utils.callbacks.grad_clip import GradClip as GradClipImage | |
from cosmos_predict1.utils.callbacks.grad_clip import _fused_nan_to_num | |
from cosmos_predict1.utils.model import Model | |
class _MagnitudeRecord: | |
state: float = 0 | |
iter_count: int = 0 | |
def reset(self) -> None: | |
self.state = 0 | |
self.iter_count = 0 | |
def update(self, cur_state: torch.Tensor) -> None: | |
self.state += cur_state | |
self.iter_count += 1 | |
def get_stat(self) -> Tuple[float, float]: | |
if self.iter_count > 0: | |
avg_state = self.state / self.iter_count | |
avg_state = avg_state.item() | |
else: | |
avg_state = 0 | |
self.reset() | |
return avg_state | |
class GradClip(GradClipImage): | |
def __init__(self, *args, **kwargs) -> None: | |
super().__init__(*args, **kwargs) | |
self.img_mag_log = _MagnitudeRecord() | |
self.video_mag_log = _MagnitudeRecord() | |
self._cur_state = None | |
def on_training_step_start(self, model: Model, data_batch: dict[str, torch.Tensor], iteration: int = 0) -> None: | |
if model.is_image_batch(data_batch): | |
self._cur_state = self.img_mag_log | |
else: | |
self._cur_state = self.video_mag_log | |
def on_before_optimizer_step( | |
self, | |
model_ddp: distributed.DistributedDataParallel, | |
optimizer: torch.optim.Optimizer, | |
scheduler: torch.optim.lr_scheduler.LRScheduler, | |
grad_scaler: torch.amp.GradScaler, | |
iteration: int = 0, | |
) -> None: | |
del optimizer, scheduler | |
if isinstance(model_ddp, distributed.DistributedDataParallel): | |
model = model_ddp.module | |
else: | |
model = model_ddp | |
params = [] | |
if self.model_key is not None: | |
items = self.model_key.split(".") | |
for item in items: | |
model = getattr(model, item) | |
if self.force_finite: | |
for param in model.parameters(): | |
if param.grad is not None: | |
params.append(param.grad) | |
# torch.nan_to_num(param.grad, nan=0, posinf=0, neginf=0, out=param.grad) | |
_fused_nan_to_num(params) | |
if isinstance(model, FSDP) and self.fsdp_enabled: | |
total_norm = model.clip_grad_norm_(self.clip_norm) | |
else: | |
if parallel_state.is_initialized() and parallel_state.get_tensor_model_parallel_world_size() > 1: | |
total_norm = model_ddp.module.clip_grad_norm_(self.clip_norm) | |
else: | |
total_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), self.clip_norm, foreach=True) | |
self._cur_state.update(total_norm) | |