Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import time | |
import torch | |
from torch import Tensor | |
from cosmos_predict1.diffusion.training.callbacks.every_n import EveryN | |
from cosmos_predict1.utils import log | |
from cosmos_predict1.utils.distributed import rank0_only | |
from cosmos_predict1.utils.model import Model | |
from cosmos_predict1.utils.trainer import Trainer | |
class IterSpeed(EveryN): | |
""" | |
Args: | |
hit_thres (int): Number of iterations to wait before logging. | |
""" | |
def __init__(self, *args, hit_thres: int = 5, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.time = None | |
self.hit_counter = 0 | |
self.hit_thres = hit_thres | |
self.name = self.__class__.__name__ | |
self.last_hit_time = time.time() | |
def on_training_step_end( | |
self, | |
model: Model, | |
data_batch: dict[str, torch.Tensor], | |
output_batch: dict[str, torch.Tensor], | |
loss: torch.Tensor, | |
iteration: int = 0, | |
) -> None: | |
if self.hit_counter < self.hit_thres: | |
log.info( | |
f"Iteration {iteration}: " | |
f"Hit counter: {self.hit_counter + 1}/{self.hit_thres} | " | |
f"Loss: {loss.item():.4f} | " | |
f"Time: {time.time() - self.last_hit_time:.2f}s" | |
) | |
self.hit_counter += 1 | |
self.last_hit_time = time.time() | |
#! useful for large scale training and avoid oom crash in the first two iterations!!! | |
torch.cuda.synchronize() | |
return | |
super().on_training_step_end(model, data_batch, output_batch, loss, iteration) | |
def every_n_impl( | |
self, | |
trainer: Trainer, | |
model: Model, | |
data_batch: dict[str, Tensor], | |
output_batch: dict[str, Tensor], | |
loss: Tensor, | |
iteration: int, | |
) -> None: | |
if self.time is None: | |
self.time = time.time() | |
return | |
cur_time = time.time() | |
iter_speed = (cur_time - self.time) / self.every_n / self.step_size | |
log.info(f"{iteration} : iter_speed {iter_speed:.2f} seconds per iteration | Loss: {loss.item():.4f}") | |
self.time = cur_time | |