Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Run this command to interactively debug: | |
PYTHONPATH=. python cosmos_predict1/diffusion/training/datasets/dataset_gear.py | |
Adapted from: | |
https://github.com/bytedance/IRASim/blob/main/dataset/dataset_3D.py | |
""" | |
import os | |
import pickle | |
import traceback | |
import warnings | |
from concurrent.futures import ThreadPoolExecutor, as_completed | |
import numpy as np | |
import torch | |
from decord import VideoReader, cpu | |
from torch.utils.data import Dataset | |
from torchvision import transforms as T | |
from tqdm import tqdm | |
from cosmos_predict1.diffusion.training.datasets.dataset_utils import Resize_Preprocess, ToTensorVideo | |
class Dataset(Dataset): | |
def __init__( | |
self, | |
dataset_dir, | |
sequence_interval, | |
num_frames, | |
video_size, | |
start_frame_interval=1, | |
): | |
"""Dataset class for loading image-text-to-video generation data. | |
Args: | |
dataset_dir (str): Base path to the dataset directory | |
sequence_interval (int): Interval between sampled frames in a sequence | |
num_frames (int): Number of frames to load per sequence | |
video_size (list): Target size [H,W] for video frames | |
Returns dict with: | |
- video: RGB frames tensor [T,C,H,W] | |
- video_name: Dict with episode/frame metadata | |
""" | |
super().__init__() | |
self.dataset_dir = dataset_dir | |
self.start_frame_interval = start_frame_interval | |
self.sequence_interval = sequence_interval | |
self.sequence_length = num_frames | |
video_dir = os.path.join(self.dataset_dir, "videos") | |
self.video_paths = [os.path.join(video_dir, f) for f in os.listdir(video_dir) if f.endswith(".mp4")] | |
# print(f"{len(self.video_paths)} trajectories in total") | |
print(f"{len(self.video_paths)} videos in total") | |
# self.t5_dir = os.path.join(self.dataset_dir, "labels") | |
self.t5_dir = os.path.join(self.dataset_dir, "t5_xxl") | |
self.samples = self._init_samples(self.video_paths) | |
self.samples = sorted(self.samples, key=lambda x: (x["video_path"], x["frame_ids"][0])) | |
print(f"{len(self.samples)} samples in total") | |
self.wrong_number = 0 | |
self.preprocess = T.Compose([ToTensorVideo(), Resize_Preprocess(tuple(video_size))]) | |
def __str__(self): | |
return f"{len(self.video_paths)} samples from {self.dataset_dir}" | |
def _init_samples(self, video_paths): | |
samples = [] | |
with ThreadPoolExecutor(32) as executor: | |
future_to_video_path = { | |
executor.submit(self._load_and_process_video_path, video_path): video_path for video_path in video_paths | |
} | |
for future in tqdm(as_completed(future_to_video_path), total=len(video_paths)): | |
samples.extend(future.result()) | |
return samples | |
def _load_and_process_video_path(self, video_path): | |
vr = VideoReader(video_path, ctx=cpu(0), num_threads=2) | |
n_frames = len(vr) | |
samples = [] | |
for frame_i in range(0, n_frames, self.start_frame_interval): | |
sample = dict() | |
sample["video_path"] = video_path | |
sample["t5_embedding_path"] = os.path.join( | |
# self.t5_dir, os.path.basename(video_path).replace(".mp4", ".npy") | |
self.t5_dir, | |
os.path.basename(video_path).replace(".mp4", ".pickle"), | |
) | |
sample["frame_ids"] = [] | |
curr_frame_i = frame_i | |
while True: | |
if curr_frame_i > (n_frames - 1): | |
break | |
sample["frame_ids"].append(curr_frame_i) | |
if len(sample["frame_ids"]) == self.sequence_length: | |
break | |
curr_frame_i += self.sequence_interval | |
# make sure there are sequence_length number of frames | |
if len(sample["frame_ids"]) == self.sequence_length: | |
samples.append(sample) | |
return samples | |
def __len__(self): | |
return len(self.samples) | |
def _load_video(self, video_path, frame_ids): | |
vr = VideoReader(video_path, ctx=cpu(0), num_threads=2) | |
assert (np.array(frame_ids) < len(vr)).all() | |
assert (np.array(frame_ids) >= 0).all() | |
vr.seek(0) | |
frame_data = vr.get_batch(frame_ids).asnumpy() | |
try: | |
fps = vr.get_avg_fps() | |
except Exception: # failed to read FPS | |
fps = 24 | |
return frame_data, fps | |
def _get_frames(self, video_path, frame_ids): | |
frames, fps = self._load_video(video_path, frame_ids) | |
frames = frames.astype(np.uint8) | |
frames = torch.from_numpy(frames).permute(0, 3, 1, 2) # (l, c, h, w) | |
frames = self.preprocess(frames) | |
frames = torch.clamp(frames * 255.0, 0, 255).to(torch.uint8) | |
return frames, fps | |
def __getitem__(self, index): | |
try: | |
sample = self.samples[index] | |
video_path = sample["video_path"] | |
frame_ids = sample["frame_ids"] | |
data = dict() | |
video, fps = self._get_frames(video_path, frame_ids) | |
video = video.permute(1, 0, 2, 3) # Rearrange from [T, C, H, W] to [C, T, H, W] | |
data["video"] = video | |
data["video_name"] = { | |
"video_path": video_path, | |
"t5_embedding_path": sample["t5_embedding_path"], | |
"start_frame_id": str(frame_ids[0]), | |
} | |
# Just add these to fit the interface | |
# t5_embedding = np.load(sample["t5_embedding_path"])[0] | |
with open(sample["t5_embedding_path"], "rb") as f: | |
t5_embedding = pickle.load(f)[0] # [n_tokens, 1024] | |
n_tokens = t5_embedding.shape[0] | |
if n_tokens < 512: | |
t5_embedding = np.concatenate( | |
[t5_embedding, np.zeros((512 - n_tokens, 1024), dtype=np.float32)], axis=0 | |
) | |
t5_text_mask = torch.zeros(512, dtype=torch.int64) | |
t5_text_mask[:n_tokens] = 1 | |
data["t5_text_embeddings"] = torch.from_numpy(t5_embedding) | |
data["t5_text_mask"] = t5_text_mask | |
data["fps"] = fps | |
data["image_size"] = torch.tensor([704, 1280, 704, 1280]) | |
data["num_frames"] = self.sequence_length | |
data["padding_mask"] = torch.zeros(1, 704, 1280) | |
return data | |
except Exception: | |
warnings.warn( | |
f"Invalid data encountered: {self.samples[index]['video_path']}. Skipped " | |
f"(by randomly sampling another sample in the same dataset)." | |
) | |
warnings.warn("FULL TRACEBACK:") | |
warnings.warn(traceback.format_exc()) | |
self.wrong_number += 1 | |
print(self.wrong_number) | |
return self[np.random.randint(len(self.samples))] | |
if __name__ == "__main__": | |
dataset = Dataset( | |
dataset_dir="datasets/cosmos_nemo_assets", | |
sequence_interval=1, | |
num_frames=57, | |
video_size=[240, 360], | |
) | |
indices = [0, 13, 200, -1] | |
for idx in indices: | |
data = dataset[idx] | |
print( | |
( | |
f"{idx=} " | |
f"{data['video'].sum()=}\n" | |
f"{data['video'].shape=}\n" | |
f"{data['video_name']=}\n" | |
f"{data['t5_text_embeddings'].shape=}\n" | |
"---" | |
) | |
) | |