Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Callable, Dict, Optional, Tuple, Union | |
import numpy as np | |
import torch | |
from megatron.core import parallel_state | |
from torch import Tensor | |
from cosmos_predict1.diffusion.training.conditioner import DataType, VideoExtendCondition | |
from cosmos_predict1.diffusion.training.models.extend_model import ExtendDiffusionModel | |
from cosmos_predict1.diffusion.training.models.model import DiffusionModel as BaseModel | |
from cosmos_predict1.diffusion.training.models.model import broadcast_condition | |
from cosmos_predict1.diffusion.training.models.model_image import diffusion_fsdp_class_decorator | |
from cosmos_predict1.utils import log | |
class InterpolatorDiffusionModel(ExtendDiffusionModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.is_extend_model = True | |
self.num_valid_latents = config.latent_shape[1] - config.num_latents_to_drop | |
self.pixel_chunk_duration = config.vae.video_vae.pixel_chunk_duration | |
self.input_image_key = getattr(self.config, "input_image_key", None) | |
self.input_data_key = self.config.input_data_key | |
def get_data_and_condition( | |
self, data_batch: dict[str, Tensor], num_condition_t: Union[int, None] = None | |
) -> Tuple[Tensor, VideoExtendCondition]: | |
raw_state, latent_state, condition = BaseModel.get_data_and_condition(self, data_batch) | |
num_valid_frames = raw_state.shape[2] - self.pixel_chunk_duration + 1 | |
raw_state, latent_state = ( | |
raw_state[:, :, :num_valid_frames, ...], | |
latent_state[:, :, : self.num_valid_latents, ...], | |
) # [B, C, T, H, W] | |
raw_state, latent_state = raw_state.contiguous(), latent_state.contiguous() | |
if condition.data_type == DataType.VIDEO: | |
if self.config.conditioner.video_cond_bool.sample_tokens_start_from_p_or_i: | |
latent_state = self.sample_tokens_start_from_p_or_i(latent_state) | |
condition = self.add_condition_video_indicator_and_video_input_mask( | |
latent_state, condition, num_condition_t=1 | |
) | |
if self.config.conditioner.video_cond_bool.add_pose_condition: | |
condition = self.add_condition_pose(data_batch, condition) | |
log.debug(f"condition.data_type {condition.data_type}") | |
return raw_state, latent_state, condition | |
def add_condition_video_indicator_and_video_input_mask( | |
self, latent_state: torch.Tensor, condition: VideoExtendCondition, num_condition_t: Union[int, None] = None | |
) -> VideoExtendCondition: | |
"""Add condition_video_indicator and condition_video_input_mask to the condition object for video conditioning. | |
condition_video_indicator is a binary tensor indicating the condition region in the latent state. 1x1xTx1x1 tensor. | |
condition_video_input_mask will be concat with the input for the network. | |
Args: | |
latent_state (torch.Tensor): latent state tensor in shape B,C,T,H,W | |
condition (VideoExtendCondition): condition object | |
num_condition_t (int): number of condition latent T, used in inference to decide the condition region and config.conditioner.video_cond_bool.condition_location == "first_n" | |
Returns: | |
VideoExtendCondition: updated condition object | |
""" | |
T = latent_state.shape[2] | |
latent_dtype = latent_state.dtype | |
condition_video_indicator = torch.zeros(1, 1, T, 1, 1, device=latent_state.device).type( | |
latent_dtype | |
) # 1 for condition region | |
if self.config.conditioner.video_cond_bool.condition_location == "first_n": | |
# Only in inference to decide the condition region | |
assert num_condition_t is not None, "num_condition_t should be provided" | |
assert num_condition_t <= T, f"num_condition_t should be less than T, get {num_condition_t}, {T}" | |
log.info( | |
f"condition_location first_n, num_condition_t {num_condition_t}, condition.video_cond_bool {condition.video_cond_bool}" | |
) | |
condition_video_indicator[:, :, :num_condition_t] += 1.0 | |
elif self.config.conditioner.video_cond_bool.condition_location == "first_and_last_1": | |
# Should be used for both training and inference. The first and last frame will be condition frames. | |
assert num_condition_t is not None, "num_condition_t should be provided" | |
assert num_condition_t <= T, f"num_condition_t should be less than T, get {num_condition_t}, {T}" | |
log.info( | |
f"condition_location first_n, num_condition_t {num_condition_t}, condition.video_cond_bool {condition.video_cond_bool}" | |
) | |
condition_video_indicator[:, :, :num_condition_t] += 1.0 | |
condition_video_indicator[:, :, -num_condition_t:] += 1.0 | |
elif self.config.conditioner.video_cond_bool.condition_location == "first_random_n": | |
# Only in training | |
num_condition_t_max = self.config.conditioner.video_cond_bool.first_random_n_num_condition_t_max | |
assert ( | |
num_condition_t_max <= T | |
), f"num_condition_t_max should be less than T, get {num_condition_t_max}, {T}" | |
assert num_condition_t_max >= self.config.conditioner.video_cond_bool.first_random_n_num_condition_t_min | |
num_condition_t = torch.randint( | |
self.config.conditioner.video_cond_bool.first_random_n_num_condition_t_min, | |
num_condition_t_max + 1, | |
(1,), | |
).item() | |
condition_video_indicator[:, :, :num_condition_t] += 1.0 | |
elif self.config.conditioner.video_cond_bool.condition_location == "random": | |
# Only in training | |
condition_rate = self.config.conditioner.video_cond_bool.random_conditon_rate | |
flag = torch.ones(1, 1, T, 1, 1, device=latent_state.device).type(latent_dtype) * condition_rate | |
condition_video_indicator = torch.bernoulli(flag).type(latent_dtype).to(latent_state.device) | |
else: | |
raise NotImplementedError( | |
f"condition_location {self.config.conditioner.video_cond_bool.condition_location} not implemented; training={self.training}" | |
) | |
condition.gt_latent = latent_state | |
condition.condition_video_indicator = condition_video_indicator | |
B, C, T, H, W = latent_state.shape | |
# Create additional input_mask channel, this will be concatenated to the input of the network | |
# See design doc section (Implementation detail A.1 and A.2) for visualization | |
ones_padding = torch.ones((B, 1, T, H, W), dtype=latent_state.dtype, device=latent_state.device) | |
zeros_padding = torch.zeros((B, 1, T, H, W), dtype=latent_state.dtype, device=latent_state.device) | |
assert condition.video_cond_bool is not None, "video_cond_bool should be set" | |
# The input mask indicate whether the input is conditional region or not | |
if condition.video_cond_bool: # Condition one given video frames | |
condition.condition_video_input_mask = ( | |
condition_video_indicator * ones_padding + (1 - condition_video_indicator) * zeros_padding | |
) | |
else: # Unconditional case, use for cfg | |
condition.condition_video_input_mask = zeros_padding | |
to_cp = self.net.is_context_parallel_enabled | |
# For inference, check if parallel_state is initialized | |
if parallel_state.is_initialized(): | |
condition = broadcast_condition(condition, to_tp=True, to_cp=to_cp) | |
else: | |
assert not to_cp, "parallel_state is not initialized, context parallel should be turned off." | |
return condition | |
class FSDPInterpolatorDiffusionModel(InterpolatorDiffusionModel): | |
pass | |