Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
from typing import Optional | |
import torch | |
from einops import rearrange, repeat | |
from einops.layers.torch import Rearrange | |
from megatron.core import parallel_state | |
from torch import nn | |
from transformer_engine.pytorch.attention import apply_rotary_pos_emb | |
from cosmos_predict1.diffusion.module.attention import Attention, GPT2FeedForward | |
from cosmos_predict1.diffusion.training.tensor_parallel import gather_along_first_dim | |
from cosmos_predict1.utils import log | |
class SDXLTimesteps(nn.Module): | |
def __init__(self, num_channels: int = 320): | |
super().__init__() | |
self.num_channels = num_channels | |
def forward(self, timesteps): | |
in_dype = timesteps.dtype | |
half_dim = self.num_channels // 2 | |
exponent = -math.log(10000) * torch.arange(half_dim, dtype=torch.float32, device=timesteps.device) | |
exponent = exponent / (half_dim - 0.0) | |
emb = torch.exp(exponent) | |
emb = timesteps[:, None].float() * emb[None, :] | |
sin_emb = torch.sin(emb) | |
cos_emb = torch.cos(emb) | |
emb = torch.cat([cos_emb, sin_emb], dim=-1) | |
return emb.to(in_dype) | |
class SDXLTimestepEmbedding(nn.Module): | |
def __init__(self, in_features: int, out_features: int, use_adaln_lora: bool = False): | |
super().__init__() | |
log.critical( | |
f"Using AdaLN LoRA Flag: {use_adaln_lora}. We enable bias if no AdaLN LoRA for backward compatibility." | |
) | |
self.linear_1 = nn.Linear(in_features, out_features, bias=not use_adaln_lora) | |
self.activation = nn.SiLU() | |
self.use_adaln_lora = use_adaln_lora | |
if use_adaln_lora: | |
self.linear_2 = nn.Linear(out_features, 3 * out_features, bias=False) | |
else: | |
self.linear_2 = nn.Linear(out_features, out_features, bias=True) | |
def forward(self, sample: torch.Tensor) -> torch.Tensor: | |
emb = self.linear_1(sample) | |
emb = self.activation(emb) | |
emb = self.linear_2(emb) | |
if self.use_adaln_lora: | |
adaln_lora_B_3D = emb | |
emb_B_D = sample | |
else: | |
emb_B_D = emb | |
adaln_lora_B_3D = None | |
return emb_B_D, adaln_lora_B_3D | |
def modulate(x, shift, scale): | |
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) | |
class PatchEmbed(nn.Module): | |
""" | |
PatchEmbed is a module for embedding patches from an input tensor by applying either 3D or 2D convolutional layers, | |
depending on the . This module can process inputs with temporal (video) and spatial (image) dimensions, | |
making it suitable for video and image processing tasks. It supports dividing the input into patches and embedding each | |
patch into a vector of size `out_channels`. | |
Parameters: | |
- spatial_patch_size (int): The size of each spatial patch. | |
- temporal_patch_size (int): The size of each temporal patch. | |
- in_channels (int): Number of input channels. Default: 3. | |
- out_channels (int): The dimension of the embedding vector for each patch. Default: 768. | |
- bias (bool): If True, adds a learnable bias to the output of the convolutional layers. Default: True. | |
- keep_spatio (bool): If True, the spatial dimensions are kept separate in the output tensor, otherwise, they are flattened. Default: False. | |
- legacy_patch_emb (bool): If True, applies 3D convolutional layers for video inputs, otherwise, use Linear! The legacy model is for backward compatibility. Default: True. | |
The output shape of the module depends on the `keep_spatio` flag. If `keep_spatio`=True, the output retains the spatial dimensions. | |
Otherwise, the spatial dimensions are flattened into a single dimension. | |
""" | |
def __init__( | |
self, | |
spatial_patch_size, | |
temporal_patch_size, | |
in_channels=3, | |
out_channels=768, | |
bias=True, | |
keep_spatio=False, | |
legacy_patch_emb: bool = True, | |
): | |
super().__init__() | |
self.spatial_patch_size = spatial_patch_size | |
self.temporal_patch_size = temporal_patch_size | |
assert keep_spatio, "Only support keep_spatio=True" | |
self.keep_spatio = keep_spatio | |
self.legacy_patch_emb = legacy_patch_emb | |
if legacy_patch_emb: | |
self.proj = nn.Conv3d( | |
in_channels, | |
out_channels, | |
kernel_size=(temporal_patch_size, spatial_patch_size, spatial_patch_size), | |
stride=(temporal_patch_size, spatial_patch_size, spatial_patch_size), | |
bias=bias, | |
) | |
self.out = Rearrange("b c t h w -> b t h w c") | |
else: | |
self.proj = nn.Sequential( | |
Rearrange( | |
"b c (t r) (h m) (w n) -> b t h w (c r m n)", | |
r=temporal_patch_size, | |
m=spatial_patch_size, | |
n=spatial_patch_size, | |
), | |
nn.Linear( | |
in_channels * spatial_patch_size * spatial_patch_size * temporal_patch_size, out_channels, bias=bias | |
), | |
) | |
self.out = nn.Identity() | |
def forward(self, x): | |
""" | |
Forward pass of the PatchEmbed module. | |
Parameters: | |
- x (torch.Tensor): The input tensor of shape (B, C, T, H, W) where | |
B is the batch size, | |
C is the number of channels, | |
T is the temporal dimension, | |
H is the height, and | |
W is the width of the input. | |
Returns: | |
- torch.Tensor: The embedded patches as a tensor, with shape b t h w c. | |
""" | |
assert x.dim() == 5 | |
_, _, T, H, W = x.shape | |
assert H % self.spatial_patch_size == 0 and W % self.spatial_patch_size == 0 | |
assert T % self.temporal_patch_size == 0 | |
x = self.proj(x) | |
return self.out(x) | |
class ExtraTokenPatchEmbed(PatchEmbed): | |
def __init__(self, *args, out_channels: int = 768, keep_spatio: bool = False, **kwargs): | |
assert keep_spatio, "ExtraTokenPatchEmbed only supports keep_spatio=True" | |
super().__init__(*args, out_channels=out_channels, keep_spatio=keep_spatio, **kwargs) | |
self.temporal_token = nn.Parameter(torch.randn(1, 1, 1, 1, out_channels)) | |
self.spatial_token = nn.Parameter(torch.randn(1, 1, 1, 1, out_channels)) | |
def forward(self, x): | |
x_B_T_H_W_C = super().forward(x) | |
B, T, H, W, C = x_B_T_H_W_C.shape | |
x_B_T_H_W_C = torch.cat( | |
[ | |
x_B_T_H_W_C, | |
self.temporal_token.repeat(B, 1, H, W, 1), | |
], | |
dim=1, | |
) | |
x_B_T_H_W_C = torch.cat( | |
[ | |
x_B_T_H_W_C, | |
self.spatial_token.repeat(B, T, H, 1, 1), | |
], | |
dim=3, | |
) | |
return x_B_T_H_W_C | |
class ExpertChoiceMoEGate(nn.Module): | |
""" | |
ExpertChoiceMoEGate determines which tokens go | |
to which experts (and how much to weigh each expert). | |
Args: | |
hidden_size (int): Dimensionality of input features. | |
num_experts (int): Number of experts (E). | |
capacity (int): Capacity (number of tokens) each expert can process (C). | |
""" | |
def __init__( | |
self, | |
hidden_size: int, | |
num_experts: int, | |
capacity: int, | |
): | |
super().__init__() | |
self.hidden_size = hidden_size | |
self.num_experts = num_experts | |
self.capacity = capacity | |
self.router = nn.Parameter(torch.empty((self.num_experts, self.hidden_size))) | |
self.reset_parameters() | |
def reset_parameters(self): | |
torch.nn.init.kaiming_uniform_(self.router) | |
def forward(self, x: torch.Tensor): | |
""" | |
Args: | |
x (Tensor): Input of shape (B, S, D) | |
Returns: | |
gating (Tensor): Gating weights of shape (B, E, C), | |
where E = num_experts, C = capacity (top-k). | |
dispatch (Tensor): Dispatch mask of shape (B, E, C, S). | |
index (Tensor): Indices of top-k tokens for each expert, | |
shape (B, E, C). | |
""" | |
B, S, D = x.shape | |
E, C = self.num_experts, self.capacity | |
# token-expert affinity scores | |
logits = torch.einsum("bsd,de->bse", x, self.router) | |
affinity = torch.nn.functional.softmax(logits, dim=-1) # (B, S, E) | |
# gather topk tokens for each expert | |
affinity_t = affinity.transpose(1, 2) # (B, E, S) | |
# select top-k tokens for each expert | |
gating, index = torch.topk(affinity_t, k=C, dim=-1) # (B, E, C) | |
# one-hot dispatch mask | |
dispatch = torch.nn.functional.one_hot(index, num_classes=S).float() # (B, E, C, S) | |
return gating, dispatch, index | |
class ExpertChoiceMoELayer(nn.Module): | |
""" | |
ExpertChoiceMoELayer uses the ExpertChoiceMoEGate to route tokens | |
to experts, process them, and then combine the outputs. | |
Args: | |
gate_hidden_size (int): Dimensionality of input features. | |
ffn_hidden_size (int): Dimension of hidden layer in each expert feedforward (e.g., GPT2FeedForward). | |
num_experts (int): Number of experts (E). | |
capacity (int): Capacity (number of tokens) each expert can process (C). | |
expert_cls (nn.Module): The class to instantiate each expert. Defaults to GPT2FeedForward. | |
expert_kwargs (dict): Extra kwargs to pass to each expert class. | |
""" | |
def __init__( | |
self, | |
gate_hidden_size: int, | |
ffn_hidden_size: int, | |
num_experts: int, | |
capacity: int, | |
expert_class: nn.Module = GPT2FeedForward, | |
expert_kwargs=None, | |
): | |
super().__init__() | |
if not expert_kwargs: | |
expert_kwargs = {} | |
self.gate_hidden_size = gate_hidden_size | |
self.ffn_hidden_size = ffn_hidden_size | |
self.num_experts = num_experts | |
self.capacity = capacity | |
self.gate = ExpertChoiceMoEGate(gate_hidden_size, num_experts, capacity) | |
self.experts = nn.ModuleList( | |
[expert_class(gate_hidden_size, ffn_hidden_size, **expert_kwargs) for _ in range(num_experts)] | |
) | |
def forward(self, x: torch.Tensor): | |
""" | |
Args: | |
x (Tensor): Input of shape (B, S, D). | |
Returns: | |
x_out (Tensor): Output of shape (B, S, D), after dispatching tokens | |
to experts and combining their outputs. | |
""" | |
B, S, D = x.shape | |
E, C = self.num_experts, self.capacity | |
# gating: (B, E, C) | |
# dispatch: (B, E, C, S) | |
gating, dispatch, index = self.gate(x) | |
# collect input tokens for each expert | |
x_in = torch.einsum("becs,bsd->becd", dispatch, x) | |
# process through each expert | |
expert_outputs = [self.experts[e](x_in[:, e]) for e in range(E)] | |
x_e = torch.stack(expert_outputs, dim=1) # (B, E, C, D) | |
# gating: (B, E, C), dispatch: (B, E, C, S), x_e: (B, E, C, d) | |
# x_out: (B, S, D) | |
# each token is placed back to its location with weighting | |
x_out = torch.einsum("becs,bec,becd->bsd", dispatch, gating, x_e) | |
return x_out | |
class FinalLayer(nn.Module): | |
""" | |
The final layer of video DiT. | |
""" | |
def __init__( | |
self, | |
hidden_size, | |
spatial_patch_size, | |
temporal_patch_size, | |
out_channels, | |
use_adaln_lora: bool = False, | |
adaln_lora_dim: int = 256, | |
): | |
super().__init__() | |
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.linear = nn.Linear( | |
hidden_size, spatial_patch_size * spatial_patch_size * temporal_patch_size * out_channels, bias=False | |
) | |
self.hidden_size = hidden_size | |
self.n_adaln_chunks = 2 | |
self.use_adaln_lora = use_adaln_lora | |
if use_adaln_lora: | |
self.adaLN_modulation = nn.Sequential( | |
nn.SiLU(), | |
nn.Linear(hidden_size, adaln_lora_dim, bias=False), | |
nn.Linear(adaln_lora_dim, self.n_adaln_chunks * hidden_size, bias=False), | |
) | |
else: | |
self.adaLN_modulation = nn.Sequential( | |
nn.SiLU(), nn.Linear(hidden_size, self.n_adaln_chunks * hidden_size, bias=False) | |
) | |
self.sequence_parallel = getattr(parallel_state, "sequence_parallel", False) | |
def forward( | |
self, | |
x_BT_HW_D, | |
emb_B_D, | |
adaln_lora_B_3D: Optional[torch.Tensor] = None, | |
): | |
if self.use_adaln_lora: | |
assert adaln_lora_B_3D is not None | |
shift_B_D, scale_B_D = (self.adaLN_modulation(emb_B_D) + adaln_lora_B_3D[:, : 2 * self.hidden_size]).chunk( | |
2, dim=1 | |
) | |
else: | |
shift_B_D, scale_B_D = self.adaLN_modulation(emb_B_D).chunk(2, dim=1) | |
B = emb_B_D.shape[0] | |
T = x_BT_HW_D.shape[0] // B | |
shift_BT_D, scale_BT_D = repeat(shift_B_D, "b d -> (b t) d", t=T), repeat(scale_B_D, "b d -> (b t) d", t=T) | |
x_BT_HW_D = modulate(self.norm_final(x_BT_HW_D), shift_BT_D, scale_BT_D) | |
if self.sequence_parallel: | |
x_T_B_HW_D = rearrange(x_BT_HW_D, "(b t) hw d -> t b hw d", b=B, t=T) | |
x_T_B_HW_D = gather_along_first_dim(x_T_B_HW_D, parallel_state.get_tensor_model_parallel_group()) | |
x_BT_HW_D = rearrange(x_T_B_HW_D, "t b hw d -> (b t) hw d", b=B) | |
x_BT_HW_D = self.linear(x_BT_HW_D) | |
return x_BT_HW_D | |
def forward_with_memory_save( | |
self, | |
x_BT_HW_D_before_gate: torch.Tensor, | |
x_BT_HW_D_skip: torch.Tensor, | |
gate_L_B_D: torch.Tensor, | |
emb_B_D, | |
adaln_lora_B_3D: Optional[torch.Tensor] = None, | |
): | |
if self.use_adaln_lora: | |
assert adaln_lora_B_3D is not None | |
shift_B_D, scale_B_D = (self.adaLN_modulation(emb_B_D) + adaln_lora_B_3D[:, : 2 * self.hidden_size]).chunk( | |
2, dim=1 | |
) | |
else: | |
shift_B_D, scale_B_D = self.adaLN_modulation(emb_B_D).chunk(2, dim=1) | |
B = emb_B_D.shape[0] | |
T = x_BT_HW_D_before_gate.shape[0] // B | |
shift_BT_D, scale_BT_D = repeat(shift_B_D, "b d -> (b t) d", t=T), repeat(scale_B_D, "b d -> (b t) d", t=T) | |
gate_BT_1_D = repeat(gate_L_B_D, "1 b d -> (b t) 1 d", t=T) | |
def _fn(_x_before_gate, _x_skip): | |
previous_block_out = _x_skip + gate_BT_1_D * _x_before_gate | |
_x = modulate(self.norm_final(previous_block_out), shift_BT_D, scale_BT_D) | |
return self.linear(_x) | |
return torch.utils.checkpoint.checkpoint(_fn, x_BT_HW_D_before_gate, x_BT_HW_D_skip, use_reentrant=False) | |
class VideoAttn(nn.Module): | |
""" | |
Implements video attention with optional cross-attention capabilities. | |
This module supports both self-attention within the video frames and cross-attention | |
with an external context. It's designed to work with flattened spatial dimensions | |
to accommodate for video input. | |
Attributes: | |
x_dim (int): Dimensionality of the input feature vectors. | |
context_dim (Optional[int]): Dimensionality of the external context features. | |
If None, the attention does not utilize external context. | |
num_heads (int): Number of attention heads. | |
bias (bool): If true, bias is added to the query, key, value projections. | |
x_format (str): The shape format of x tenosor. | |
n_views (int): Extra parameter used in multi-view diffusion model. It indicated total number of view we model together. | |
""" | |
def __init__( | |
self, | |
x_dim: int, | |
context_dim: Optional[int], | |
num_heads: int, | |
bias: bool = False, | |
x_format: str = "BTHWD", | |
n_views: int = 1, | |
) -> None: | |
super().__init__() | |
self.n_views = n_views | |
self.x_format = x_format | |
if self.x_format == "BTHWD": | |
qkv_format = "bshd" | |
elif self.x_format == "THWBD": | |
qkv_format = "sbhd" | |
else: | |
raise NotImplementedError(f"Unsupported x_format: {self.x_format}") | |
self.attn = Attention( | |
x_dim, | |
context_dim, | |
num_heads, | |
x_dim // num_heads, | |
qkv_bias=bias, | |
qkv_norm="RRI", | |
out_bias=bias, | |
qkv_format=qkv_format, | |
) | |
def forward( | |
self, | |
x: torch.Tensor, | |
context: Optional[torch.Tensor] = None, | |
crossattn_mask: Optional[torch.Tensor] = None, | |
rope_emb_L_1_1_D: Optional[torch.Tensor] = None, | |
) -> torch.Tensor: | |
""" | |
Forward pass for video attention. | |
Args: | |
x (Tensor): Input tensor of shape (B, T, H, W, D) or (T, H, W, B, D) representing batches of video data. | |
context (Tensor): Context tensor of shape (B, M, D) or (M, B, D), where M is the sequence length of the context. | |
crossattn_mask (Optional[Tensor]): An optional mask for cross-attention mechanisms. | |
rope_emb_L_1_1_D (Optional[Tensor]): Rotary positional embedding tensor of shape (L, 1, 1, D). L == THW for current video training. transformer_engine format | |
Returns: | |
Tensor: The output tensor with applied attention, maintaining the input shape. | |
""" | |
if self.x_format == "BTHWD": | |
if context is not None and self.n_views > 1: | |
x_B_T_H_W_D = rearrange(x, "b (v t) h w d -> (v b) t h w d", v=self.n_views) | |
context_B_M_D = rearrange(context, "b (v m) d -> (v b) m d", v=self.n_views) | |
else: | |
x_B_T_H_W_D = x | |
context_B_M_D = context | |
B, T, H, W, D = x_B_T_H_W_D.shape | |
x_B_THW_D = rearrange(x_B_T_H_W_D, "b t h w d -> b (t h w) d") | |
x_B_THW_D = self.attn(x_B_THW_D, context_B_M_D, crossattn_mask, rope_emb=rope_emb_L_1_1_D) | |
# reshape it back to video format | |
x_B_T_H_W_D = rearrange(x_B_THW_D, "b (t h w) d -> b t h w d", h=H, w=W) | |
if context is not None and self.n_views > 1: | |
x_B_T_H_W_D = rearrange(x_B_T_H_W_D, "(v b) t h w d -> b (v t) h w d", v=self.n_views) | |
return x_B_T_H_W_D | |
elif self.x_format == "THWBD": | |
if context is not None and self.n_views > 1: | |
x_T_H_W_B_D = rearrange(x, "(v t) h w b d -> t h w (v b) d", v=self.n_views) | |
context_M_B_D = rearrange(context, "(v m) b d -> m (v b) d", v=self.n_views) | |
else: | |
x_T_H_W_B_D = x | |
context_M_B_D = context | |
T, H, W, B, D = x_T_H_W_B_D.shape | |
x_THW_B_D = rearrange(x_T_H_W_B_D, "t h w b d -> (t h w) b d") | |
x_THW_B_D = self.attn( | |
x_THW_B_D, | |
context_M_B_D, | |
crossattn_mask, | |
rope_emb=rope_emb_L_1_1_D, | |
) | |
x_T_H_W_B_D = rearrange(x_THW_B_D, "(t h w) b d -> t h w b d", h=H, w=W) | |
if context is not None and self.n_views > 1: | |
x_T_H_W_B_D = rearrange(x_T_H_W_B_D, "t h w (v b) d -> (v t) h w b d", v=self.n_views) | |
return x_T_H_W_B_D | |
else: | |
raise NotImplementedError(f"Unsupported x_format: {self.x_format}") | |
def checkpoint_norm_state(norm_state, x, scale, shift): | |
normalized = norm_state(x) | |
return normalized * (1 + scale) + shift | |
class DITBuildingBlock(nn.Module): | |
""" | |
DIT Building Block for constructing various types of attention or MLP blocks dynamically based on a specified block type. | |
This class instantiates different types of buildig block / attn and MLP based on config, and applies crossponding forward pass during training. | |
Attributes: | |
block_type (str): Type of block to be used ('spatial_sa', 'temporal_sa', 'cross_attn', 'full_attn', 'mlp'). | |
x_dim (int): Dimensionality of the input features. | |
context_dim (Optional[int]): Dimensionality of the external context, required for cross attention blocks. | |
num_heads (int): Number of attention heads. | |
mlp_ratio (float): Multiplier for the dimensionality of the MLP hidden layer compared to input. | |
spatial_win_size (int): Window size for spatial self-attention. | |
temporal_win_size (int): Window size for temporal self-attention. | |
bias (bool): Whether to include bias in attention and MLP computations. | |
mlp_dropout (float): Dropout rate for MLP blocks. | |
n_views (int): Extra parameter used in multi-view diffusion model. It indicated total number of view we model together. | |
""" | |
def __init__( | |
self, | |
block_type: str, | |
x_dim: int, | |
context_dim: Optional[int], | |
num_heads: int, | |
mlp_ratio: float = 4.0, | |
window_sizes: list = [], | |
spatial_win_size: int = 1, | |
temporal_win_size: int = 1, | |
bias: bool = False, | |
mlp_dropout: float = 0.0, | |
x_format: str = "BTHWD", | |
use_adaln_lora: bool = False, | |
adaln_lora_dim: int = 256, | |
n_views: int = 1, | |
) -> None: | |
block_type = block_type.lower() | |
super().__init__() | |
self.x_format = x_format | |
if block_type in ["cross_attn", "ca"]: | |
self.block = VideoAttn( | |
x_dim, | |
context_dim, | |
num_heads, | |
bias=bias, | |
x_format=self.x_format, | |
n_views=n_views, | |
) | |
elif block_type in ["full_attn", "fa"]: | |
self.block = VideoAttn(x_dim, None, num_heads, bias=bias, x_format=self.x_format) | |
elif block_type in ["mlp", "ff"]: | |
self.block = GPT2FeedForward(x_dim, int(x_dim * mlp_ratio), dropout=mlp_dropout, bias=bias) | |
else: | |
raise ValueError(f"Unknown block type: {block_type}") | |
self.block_type = block_type | |
self.use_adaln_lora = use_adaln_lora | |
self.norm_state = nn.LayerNorm(x_dim, elementwise_affine=False, eps=1e-6) | |
self.n_adaln_chunks = 3 | |
if use_adaln_lora: | |
self.adaLN_modulation = nn.Sequential( | |
nn.SiLU(), | |
nn.Linear(x_dim, adaln_lora_dim, bias=False), | |
nn.Linear(adaln_lora_dim, self.n_adaln_chunks * x_dim, bias=False), | |
) | |
else: | |
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(x_dim, self.n_adaln_chunks * x_dim, bias=False)) | |
def forward_with_attn_memory_save( | |
self, | |
x_before_gate: torch.Tensor, | |
x_skip: torch.Tensor, | |
gate_L_B_D: torch.Tensor, | |
emb_B_D: torch.Tensor, | |
crossattn_emb: torch.Tensor, | |
crossattn_mask: Optional[torch.Tensor] = None, | |
rope_emb_L_1_1_D: Optional[torch.Tensor] = None, | |
adaln_lora_B_3D: Optional[torch.Tensor] = None, | |
extra_per_block_pos_emb: Optional[torch.Tensor] = None, | |
): | |
del crossattn_mask | |
assert isinstance(self.block, VideoAttn), "only support VideoAttn impl" | |
if self.use_adaln_lora: | |
shift_B_D, scale_B_D, gate_B_D = (self.adaLN_modulation(emb_B_D) + adaln_lora_B_3D).chunk( | |
self.n_adaln_chunks, dim=1 | |
) | |
else: | |
shift_B_D, scale_B_D, gate_B_D = self.adaLN_modulation(emb_B_D).chunk(self.n_adaln_chunks, dim=1) | |
shift_L_B_D, scale_L_B_D, _gate_L_B_D = ( | |
shift_B_D.unsqueeze(0), | |
scale_B_D.unsqueeze(0), | |
gate_B_D.unsqueeze(0), | |
) | |
def _fn(_x_before_gate, _x_skip, _context): | |
previous_block_out = _x_skip + gate_L_B_D * _x_before_gate | |
if extra_per_block_pos_emb is not None: | |
previous_block_out = previous_block_out + extra_per_block_pos_emb | |
_normalized_x = self.norm_state(previous_block_out) | |
normalized_x = _normalized_x * (1 + scale_L_B_D) + shift_L_B_D | |
# context = normalized_x if _context is None else _context | |
context = normalized_x if self.block.attn.is_selfattn else _context | |
return ( | |
self.block.attn.to_q[0](normalized_x), | |
self.block.attn.to_k[0](context), | |
self.block.attn.to_v[0](context), | |
previous_block_out, | |
) | |
q, k, v, previous_block_out = torch.utils.checkpoint.checkpoint( | |
_fn, x_before_gate, x_skip, crossattn_emb, use_reentrant=False | |
) | |
def attn_fn(_q, _k, _v): | |
q, k, v = map( | |
lambda t: rearrange( | |
t, | |
"b ... (n c) -> b ... n c", | |
n=self.block.attn.heads // self.block.attn.tp_size, | |
c=self.block.attn.dim_head, | |
), | |
(_q, _k, _v), | |
) | |
q = self.block.attn.to_q[1](q) | |
k = self.block.attn.to_k[1](k) | |
v = self.block.attn.to_v[1](v) | |
if self.block.attn.is_selfattn and rope_emb_L_1_1_D is not None: # only apply to self-attention! | |
q = apply_rotary_pos_emb(q, rope_emb_L_1_1_D, tensor_format=self.block.attn.qkv_format, fused=True) | |
k = apply_rotary_pos_emb(k, rope_emb_L_1_1_D, tensor_format=self.block.attn.qkv_format, fused=True) | |
if self.block.attn.is_selfattn: | |
return q, k, v | |
seq_dim = self.block.attn.qkv_format.index("s") | |
assert ( | |
q.shape[seq_dim] > 1 and k.shape[seq_dim] > 1 | |
), "Seqlen must be larger than 1 for TE Attention starting with 1.8 TE version." | |
return self.block.attn.attn_op( | |
q, k, v, core_attention_bias_type="no_bias", core_attention_bias=None | |
) # [B, Mq, H, V] | |
assert self.block.attn.backend == "transformer_engine", "Only support transformer_engine backend for now." | |
if self.block.attn.is_selfattn: | |
q, k, v = torch.utils.checkpoint.checkpoint(attn_fn, q, k, v, use_reentrant=False) | |
seq_dim = self.block.attn.qkv_format.index("s") | |
assert ( | |
q.shape[seq_dim] > 1 and k.shape[seq_dim] > 1 | |
), "Seqlen must be larger than 1 for TE Attention starting with 1.8 TE version." | |
softmax_attn_output = self.block.attn.attn_op( | |
q, k, v, core_attention_bias_type="no_bias", core_attention_bias=None | |
) # [B, Mq, H, V] | |
else: | |
softmax_attn_output = torch.utils.checkpoint.checkpoint(attn_fn, q, k, v, use_reentrant=False) | |
attn_out = self.block.attn.to_out(softmax_attn_output) | |
return _gate_L_B_D, attn_out, previous_block_out | |
def forward_with_x_attn_memory_save( | |
self, | |
x_before_gate: torch.Tensor, | |
x_skip: torch.Tensor, | |
gate_L_B_D: torch.Tensor, | |
emb_B_D: torch.Tensor, | |
crossattn_emb: torch.Tensor, | |
crossattn_mask: Optional[torch.Tensor] = None, | |
rope_emb_L_1_1_D: Optional[torch.Tensor] = None, | |
adaln_lora_B_3D: Optional[torch.Tensor] = None, | |
extra_per_block_pos_emb: Optional[torch.Tensor] = None, | |
): | |
del crossattn_mask | |
assert isinstance(self.block, VideoAttn) | |
if self.use_adaln_lora: | |
shift_B_D, scale_B_D, gate_B_D = (self.adaLN_modulation(emb_B_D) + adaln_lora_B_3D).chunk( | |
self.n_adaln_chunks, dim=1 | |
) | |
else: | |
shift_B_D, scale_B_D, gate_B_D = self.adaLN_modulation(emb_B_D).chunk(self.n_adaln_chunks, dim=1) | |
shift_L_B_D, scale_L_B_D, _gate_L_B_D = ( | |
shift_B_D.unsqueeze(0), | |
scale_B_D.unsqueeze(0), | |
gate_B_D.unsqueeze(0), | |
) | |
def _fn(_x_before_gate, _x_skip, _context): | |
previous_block_out = _x_skip + gate_L_B_D * _x_before_gate | |
if extra_per_block_pos_emb is not None: | |
previous_block_out = previous_block_out + extra_per_block_pos_emb | |
_normalized_x = self.norm_state(previous_block_out) | |
normalized_x = _normalized_x * (1 + scale_L_B_D) + shift_L_B_D | |
# context = normalized_x if _context is None else _context | |
context = normalized_x if self.block.attn.is_selfattn else _context | |
return ( | |
self.block.attn.to_q[0](normalized_x), | |
self.block.attn.to_k[0](context), | |
self.block.attn.to_v[0](context), | |
previous_block_out, | |
) | |
q, k, v, previous_block_out = torch.utils.checkpoint.checkpoint( | |
_fn, x_before_gate, x_skip, crossattn_emb, use_reentrant=False | |
) | |
def x_attn_fn(_q, _k, _v): | |
q, k, v = map( | |
lambda t: rearrange( | |
t, | |
"b ... (n c) -> b ... n c", | |
n=self.block.attn.heads // self.block.attn.tp_size, | |
c=self.block.attn.dim_head, | |
), | |
(_q, _k, _v), | |
) | |
q = self.block.attn.to_q[1](q) | |
k = self.block.attn.to_k[1](k) | |
v = self.block.attn.to_v[1](v) | |
if self.block.attn.is_selfattn and rope_emb_L_1_1_D is not None: # only apply to self-attention! | |
q = apply_rotary_pos_emb(q, rope_emb_L_1_1_D, tensor_format=self.block.attn.qkv_format, fused=True) | |
k = apply_rotary_pos_emb(k, rope_emb_L_1_1_D, tensor_format=self.block.attn.qkv_format, fused=True) | |
seq_dim = self.block.attn.qkv_format.index("s") | |
assert ( | |
q.shape[seq_dim] > 1 and k.shape[seq_dim] > 1 | |
), "Seqlen must be larger than 1 for TE Attention starting with 1.8 TE version." | |
softmax_attn_output = self.block.attn.attn_op( | |
q, k, v, core_attention_bias_type="no_bias", core_attention_bias=None | |
) # [B, Mq, H, V] | |
return self.block.attn.to_out(softmax_attn_output) | |
assert self.block.attn.backend == "transformer_engine", "Only support transformer_engine backend for now." | |
attn_out = torch.utils.checkpoint.checkpoint(x_attn_fn, q, k, v, use_reentrant=False) | |
return _gate_L_B_D, attn_out, previous_block_out | |
def forward_with_ffn_memory_save( | |
self, | |
x_before_gate: torch.Tensor, | |
x_skip: torch.Tensor, | |
gate_L_B_D: torch.Tensor, | |
emb_B_D: torch.Tensor, | |
crossattn_emb: torch.Tensor, | |
crossattn_mask: Optional[torch.Tensor] = None, | |
rope_emb_L_1_1_D: Optional[torch.Tensor] = None, | |
adaln_lora_B_3D: Optional[torch.Tensor] = None, | |
extra_per_block_pos_emb: Optional[torch.Tensor] = None, | |
): | |
del crossattn_emb, crossattn_mask, rope_emb_L_1_1_D | |
assert isinstance(self.block, GPT2FeedForward) | |
if self.use_adaln_lora: | |
shift_B_D, scale_B_D, gate_B_D = (self.adaLN_modulation(emb_B_D) + adaln_lora_B_3D).chunk( | |
self.n_adaln_chunks, dim=1 | |
) | |
else: | |
shift_B_D, scale_B_D, gate_B_D = self.adaLN_modulation(emb_B_D).chunk(self.n_adaln_chunks, dim=1) | |
shift_L_B_D, scale_L_B_D, _gate_L_B_D = ( | |
shift_B_D.unsqueeze(0), | |
scale_B_D.unsqueeze(0), | |
gate_B_D.unsqueeze(0), | |
) | |
def _fn(_x_before_gate, _x_skip): | |
previous_block_out = _x_skip + gate_L_B_D * _x_before_gate | |
if extra_per_block_pos_emb is not None: | |
previous_block_out = previous_block_out + extra_per_block_pos_emb | |
_normalized_x = self.norm_state(previous_block_out) | |
normalized_x = _normalized_x * (1 + scale_L_B_D) + shift_L_B_D | |
assert self.block.dropout.p == 0.0, "we skip dropout to save memory" | |
return self.block.layer1(normalized_x), previous_block_out | |
intermediate_output, previous_block_out = torch.utils.checkpoint.checkpoint( | |
_fn, x_before_gate, x_skip, use_reentrant=False | |
) | |
def _fn2(_x): | |
_x = self.block.activation(_x) | |
return self.block.layer2(_x) | |
return ( | |
_gate_L_B_D, | |
torch.utils.checkpoint.checkpoint(_fn2, intermediate_output, use_reentrant=False), | |
previous_block_out, | |
) | |
def forward_with_ffn_memory_save_upgrade( | |
self, | |
x_before_gate: torch.Tensor, | |
x_skip: torch.Tensor, | |
gate_L_B_D: torch.Tensor, | |
emb_B_D: torch.Tensor, | |
crossattn_emb: torch.Tensor, | |
crossattn_mask: Optional[torch.Tensor] = None, | |
rope_emb_L_1_1_D: Optional[torch.Tensor] = None, | |
adaln_lora_B_3D: Optional[torch.Tensor] = None, | |
extra_per_block_pos_emb: Optional[torch.Tensor] = None, | |
): | |
del crossattn_emb, crossattn_mask, rope_emb_L_1_1_D | |
assert isinstance(self.block, GPT2FeedForward) | |
if self.use_adaln_lora: | |
shift_B_D, scale_B_D, gate_B_D = (self.adaLN_modulation(emb_B_D) + adaln_lora_B_3D).chunk( | |
self.n_adaln_chunks, dim=1 | |
) | |
else: | |
shift_B_D, scale_B_D, gate_B_D = self.adaLN_modulation(emb_B_D).chunk(self.n_adaln_chunks, dim=1) | |
shift_L_B_D, scale_L_B_D, _gate_L_B_D = ( | |
shift_B_D.unsqueeze(0), | |
scale_B_D.unsqueeze(0), | |
gate_B_D.unsqueeze(0), | |
) | |
def _fn2(_x): | |
_x = self.block.activation(_x) | |
return self.block.layer2(_x) | |
def _fn(_x_before_gate, _x_skip): | |
previous_block_out = _x_skip + gate_L_B_D * _x_before_gate | |
if extra_per_block_pos_emb is not None: | |
previous_block_out = previous_block_out + extra_per_block_pos_emb | |
_normalized_x = self.norm_state(previous_block_out) | |
normalized_x = _normalized_x * (1 + scale_L_B_D) + shift_L_B_D | |
assert self.block.dropout.p == 0.0, "we skip dropout to save memory" | |
return _fn2(self.block.layer1(normalized_x)), previous_block_out | |
output, previous_block_out = torch.utils.checkpoint.checkpoint(_fn, x_before_gate, x_skip, use_reentrant=False) | |
return ( | |
_gate_L_B_D, | |
output, | |
previous_block_out, | |
) | |
def forward_with_memory_save( | |
self, | |
x_before_gate: torch.Tensor, | |
x_skip: torch.Tensor, | |
gate_L_B_D: torch.Tensor, | |
emb_B_D: torch.Tensor, | |
crossattn_emb: torch.Tensor, | |
crossattn_mask: Optional[torch.Tensor] = None, | |
rope_emb_L_1_1_D: Optional[torch.Tensor] = None, | |
adaln_lora_B_3D: Optional[torch.Tensor] = None, | |
extra_per_block_pos_emb: Optional[torch.Tensor] = None, | |
): | |
if isinstance(self.block, VideoAttn): | |
if self.block.attn.is_selfattn: | |
fn = self.forward_with_attn_memory_save | |
else: | |
fn = self.forward_with_x_attn_memory_save | |
else: | |
# fn = self.forward_with_ffn_memory_save | |
fn = self.forward_with_ffn_memory_save_upgrade | |
return fn( | |
x_before_gate, | |
x_skip, | |
gate_L_B_D, | |
emb_B_D, | |
crossattn_emb, | |
crossattn_mask, | |
rope_emb_L_1_1_D, | |
adaln_lora_B_3D, | |
extra_per_block_pos_emb, | |
) | |
def forward( | |
self, | |
x: torch.Tensor, | |
emb_B_D: torch.Tensor, | |
crossattn_emb: torch.Tensor, | |
crossattn_mask: Optional[torch.Tensor] = None, | |
rope_emb_L_1_1_D: Optional[torch.Tensor] = None, | |
adaln_lora_B_3D: Optional[torch.Tensor] = None, | |
) -> torch.Tensor: | |
""" | |
Forward pass for dynamically configured blocks with adaptive normalization. | |
Args: | |
x (Tensor): Input tensor of shape (B, T, H, W, D) or (T, H, W, B, D). | |
emb_B_D (Tensor): Embedding tensor for adaptive layer normalization modulation. | |
crossattn_emb (Tensor): Tensor for cross-attention blocks. | |
crossattn_mask (Optional[Tensor]): Optional mask for cross-attention. | |
rope_emb_L_1_1_D (Optional[Tensor]): Rotary positional embedding tensor of shape (L, 1, 1, D). L == THW for current video training. transformer_engine format | |
Returns: | |
Tensor: The output tensor after processing through the configured block and adaptive normalization. | |
""" | |
if self.use_adaln_lora: | |
shift_B_D, scale_B_D, gate_B_D = (self.adaLN_modulation(emb_B_D) + adaln_lora_B_3D).chunk( | |
self.n_adaln_chunks, dim=1 | |
) | |
else: | |
shift_B_D, scale_B_D, gate_B_D = self.adaLN_modulation(emb_B_D).chunk(self.n_adaln_chunks, dim=1) | |
if self.x_format == "BTHWD": | |
shift_B_1_1_1_D, scale_B_1_1_1_D, gate_B_1_1_1_D = ( | |
shift_B_D.unsqueeze(1).unsqueeze(2).unsqueeze(3), | |
scale_B_D.unsqueeze(1).unsqueeze(2).unsqueeze(3), | |
gate_B_D.unsqueeze(1).unsqueeze(2).unsqueeze(3), | |
) | |
if self.block_type in ["spatial_sa", "temporal_sa", "window_attn", "ssa", "tsa", "wa"]: | |
x = x + gate_B_1_1_1_D * self.block( | |
self.norm_state(x) * (1 + scale_B_1_1_1_D) + shift_B_1_1_1_D, | |
rope_emb_L_1_1_D=rope_emb_L_1_1_D, | |
) | |
elif self.block_type in ["full_attn", "fa"]: | |
x = x + gate_B_1_1_1_D * self.block( | |
self.norm_state(x) * (1 + scale_B_1_1_1_D) + shift_B_1_1_1_D, | |
context=None, | |
rope_emb_L_1_1_D=rope_emb_L_1_1_D, | |
) | |
elif self.block_type in ["cross_attn", "ca"]: | |
x = x + gate_B_1_1_1_D * self.block( | |
self.norm_state(x) * (1 + scale_B_1_1_1_D) + shift_B_1_1_1_D, | |
crossattn_emb, | |
crossattn_mask, | |
) | |
elif self.block_type in ["mlp", "ff"]: | |
x = x + gate_B_1_1_1_D * self.block( | |
self.norm_state(x) * (1 + scale_B_1_1_1_D) + shift_B_1_1_1_D, | |
) | |
else: | |
raise ValueError(f"Unknown block type: {self.block_type}") | |
elif self.x_format == "THWBD": | |
shift_1_1_1_B_D, scale_1_1_1_B_D, gate_1_1_1_B_D = ( | |
shift_B_D.unsqueeze(0).unsqueeze(0).unsqueeze(0), | |
scale_B_D.unsqueeze(0).unsqueeze(0).unsqueeze(0), | |
gate_B_D.unsqueeze(0).unsqueeze(0).unsqueeze(0), | |
) | |
if self.block_type in ["mlp", "ff"]: | |
x = x + gate_1_1_1_B_D * self.block( | |
torch.utils.checkpoint.checkpoint( | |
checkpoint_norm_state, self.norm_state, x, scale_1_1_1_B_D, shift_1_1_1_B_D, use_reentrant=False | |
), | |
) | |
elif self.block_type in ["full_attn", "fa"]: | |
x = x + gate_1_1_1_B_D * self.block( | |
torch.utils.checkpoint.checkpoint( | |
checkpoint_norm_state, self.norm_state, x, scale_1_1_1_B_D, shift_1_1_1_B_D, use_reentrant=False | |
), | |
context=None, | |
rope_emb_L_1_1_D=rope_emb_L_1_1_D, | |
) | |
elif self.block_type in ["cross_attn", "ca"]: | |
x = x + gate_1_1_1_B_D * self.block( | |
torch.utils.checkpoint.checkpoint( | |
checkpoint_norm_state, self.norm_state, x, scale_1_1_1_B_D, shift_1_1_1_B_D, use_reentrant=False | |
), | |
context=crossattn_emb, | |
crossattn_mask=crossattn_mask, | |
rope_emb_L_1_1_D=rope_emb_L_1_1_D, | |
) | |
else: | |
raise ValueError(f"Unknown block type: {self.block_type}") | |
else: | |
raise NotImplementedError(f"Unsupported x_format: {self.x_format}") | |
return x | |
class GeneralDITTransformerBlock(nn.Module): | |
""" | |
This class is a wrapper for a list of DITBuildingBlock. | |
It's not essential, refactor it if needed. | |
""" | |
def __init__( | |
self, | |
x_dim: int, | |
context_dim: int, | |
num_heads: int, | |
block_config: str, | |
mlp_ratio: float = 4.0, | |
window_sizes: list = [], | |
spatial_attn_win_size: int = 1, | |
temporal_attn_win_size: int = 1, | |
use_checkpoint: bool = False, | |
x_format: str = "BTHWD", | |
use_adaln_lora: bool = False, | |
adaln_lora_dim: int = 256, | |
n_views: int = 1, | |
): | |
super().__init__() | |
self.blocks = nn.ModuleList() | |
self.x_format = x_format | |
for block_type in block_config.split("-"): | |
self.blocks.append( | |
DITBuildingBlock( | |
block_type, | |
x_dim, | |
context_dim, | |
num_heads, | |
mlp_ratio, | |
window_sizes, | |
spatial_attn_win_size, | |
temporal_attn_win_size, | |
x_format=self.x_format, | |
use_adaln_lora=use_adaln_lora, | |
adaln_lora_dim=adaln_lora_dim, | |
n_views=n_views, | |
) | |
) | |
self.use_checkpoint = use_checkpoint | |
def forward( | |
self, | |
x: torch.Tensor, | |
emb_B_D: torch.Tensor, | |
crossattn_emb: torch.Tensor, | |
crossattn_mask: Optional[torch.Tensor] = None, | |
rope_emb_L_1_1_D: Optional[torch.Tensor] = None, | |
adaln_lora_B_3D: Optional[torch.Tensor] = None, | |
extra_per_block_pos_emb: Optional[torch.Tensor] = None, | |
) -> torch.Tensor: | |
if self.use_checkpoint: | |
return torch.utils.checkpoint.checkpoint( | |
self._forward, | |
x, | |
emb_B_D, | |
crossattn_emb, | |
crossattn_mask, | |
rope_emb_L_1_1_D, | |
adaln_lora_B_3D, | |
extra_per_block_pos_emb, | |
) | |
else: | |
return self._forward( | |
x, emb_B_D, crossattn_emb, crossattn_mask, rope_emb_L_1_1_D, adaln_lora_B_3D, extra_per_block_pos_emb | |
) | |
def _forward( | |
self, | |
x: torch.Tensor, | |
emb_B_D: torch.Tensor, | |
crossattn_emb: torch.Tensor, | |
crossattn_mask: Optional[torch.Tensor] = None, | |
rope_emb_L_1_1_D: Optional[torch.Tensor] = None, | |
adaln_lora_B_3D: Optional[torch.Tensor] = None, | |
extra_per_block_pos_emb: Optional[torch.Tensor] = None, | |
) -> torch.Tensor: | |
if extra_per_block_pos_emb is not None: | |
x = x + extra_per_block_pos_emb | |
for block in self.blocks: | |
x = block( | |
x, | |
emb_B_D, | |
crossattn_emb, | |
crossattn_mask, | |
rope_emb_L_1_1_D=rope_emb_L_1_1_D, | |
adaln_lora_B_3D=adaln_lora_B_3D, | |
) | |
return x | |
def set_memory_save(self, mode: bool = True): | |
# (qsh) to make fsdp happy! | |
#! IMPORTANT! | |
if mode: | |
self.forward = self.forward_with_memory_save | |
for block in self.blocks: | |
block.forward = block.forward_with_memory_save | |
else: | |
raise NotImplementedError("Not implemented yet.") | |
def forward_with_memory_save( | |
self, | |
x_before_gate: torch.Tensor, | |
x_skip: torch.Tensor, | |
gate_L_B_D: torch.Tensor, | |
emb_B_D: torch.Tensor, | |
crossattn_emb: torch.Tensor, | |
crossattn_mask: Optional[torch.Tensor] = None, | |
rope_emb_L_1_1_D: Optional[torch.Tensor] = None, | |
adaln_lora_B_3D: Optional[torch.Tensor] = None, | |
extra_per_block_pos_emb: Optional[torch.Tensor] = None, | |
): | |
for block in self.blocks: | |
gate_L_B_D, x_before_gate, x_skip = block.forward( | |
x_before_gate, | |
x_skip, | |
gate_L_B_D, | |
emb_B_D, | |
crossattn_emb, | |
crossattn_mask, | |
rope_emb_L_1_1_D, | |
adaln_lora_B_3D, | |
extra_per_block_pos_emb, | |
) | |
extra_per_block_pos_emb = None | |
return gate_L_B_D, x_before_gate, x_skip | |