roll-ai's picture
Upload 381 files
b6af722 verified
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional
import torch
from einops import rearrange
from megatron.core import parallel_state
from torch import nn
from cosmos_predict1.diffusion.training.conditioner import DataType
from cosmos_predict1.diffusion.training.context_parallel import split_inputs_cp
from cosmos_predict1.diffusion.training.module.blocks import SDXLTimestepEmbedding, SDXLTimesteps
from cosmos_predict1.diffusion.training.networks.general_dit import GeneralDIT
from cosmos_predict1.diffusion.training.tensor_parallel import scatter_along_first_dim
from cosmos_predict1.utils import log
class VideoExtendGeneralDIT(GeneralDIT):
def __init__(self, *args, in_channels=16 + 1, add_augment_sigma_embedding=False, **kwargs):
self.add_augment_sigma_embedding = add_augment_sigma_embedding
# extra channel for video condition mask
super().__init__(*args, in_channels=in_channels, **kwargs)
log.info(f"VideoExtendGeneralDIT in_channels: {in_channels}")
def build_additional_timestamp_embedder(self):
super().build_additional_timestamp_embedder()
if self.add_augment_sigma_embedding:
log.info("Adding augment sigma embedding")
self.augment_sigma_embedder = nn.Sequential(
SDXLTimesteps(self.model_channels),
SDXLTimestepEmbedding(self.model_channels, self.model_channels, use_adaln_lora=self.use_adaln_lora),
)
def init_weights(self):
if self.add_augment_sigma_embedding:
# Initialize timestep embedding for augment sigma
nn.init.normal_(self.augment_sigma_embedder[1].linear_1.weight, std=0.02)
if self.augment_sigma_embedder[1].linear_1.bias is not None:
nn.init.constant_(self.augment_sigma_embedder[1].linear_1.bias, 0)
nn.init.normal_(self.augment_sigma_embedder[1].linear_2.weight, std=0.02)
if self.augment_sigma_embedder[1].linear_2.bias is not None:
nn.init.constant_(self.augment_sigma_embedder[1].linear_2.bias, 0)
super().init_weights() # Call this last since it wil call TP weight init
def forward(
self,
x: torch.Tensor,
timesteps: torch.Tensor,
crossattn_emb: torch.Tensor,
crossattn_mask: Optional[torch.Tensor] = None,
fps: Optional[torch.Tensor] = None,
image_size: Optional[torch.Tensor] = None,
padding_mask: Optional[torch.Tensor] = None,
scalar_feature: Optional[torch.Tensor] = None,
data_type: Optional[DataType] = DataType.VIDEO,
video_cond_bool: Optional[torch.Tensor] = None,
condition_video_indicator: Optional[torch.Tensor] = None,
condition_video_input_mask: Optional[torch.Tensor] = None,
condition_video_augment_sigma: Optional[torch.Tensor] = None,
condition_video_pose: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
"""Args:
condition_video_augment_sigma: (B) tensor of sigma value for the conditional input augmentation
condition_video_pose: (B, 1, T, H, W) tensor of pose condition
"""
B, C, T, H, W = x.shape
if data_type == DataType.VIDEO:
assert (
condition_video_input_mask is not None
), "condition_video_input_mask is required for video data type; check if your model_obj is extend_model.FSDPDiffusionModel or the base DiffusionModel"
if self.cp_group is not None:
condition_video_input_mask = split_inputs_cp(
condition_video_input_mask, seq_dim=2, cp_group=self.cp_group
)
condition_video_indicator = split_inputs_cp(
condition_video_indicator, seq_dim=2, cp_group=self.cp_group
)
if condition_video_pose is not None:
condition_video_pose = split_inputs_cp(condition_video_pose, seq_dim=2, cp_group=self.cp_group)
# log.critical(f"hit video case, video_cond_bool: {video_cond_bool}, condition_video_indicator: {condition_video_indicator.flatten()}, condition_video_input_mask: {condition_video_input_mask.shape}, {condition_video_input_mask[:,:,:,0,0]}", rank0_only=False)
input_list = [x, condition_video_input_mask]
if condition_video_pose is not None:
if condition_video_pose.shape[2] > T:
log.warning(
f"condition_video_pose has more frames than the input video: {condition_video_pose.shape} > {x.shape}"
)
condition_video_pose = condition_video_pose[:, :, :T, :, :].contiguous()
input_list.append(condition_video_pose)
x = torch.cat(
input_list,
dim=1,
)
if data_type == DataType.IMAGE:
# For image, we dont have condition_video_input_mask, or condition_video_pose
# We need to add the extra channel for video condition mask
padding_channels = self.in_channels - x.shape[1]
x = torch.cat([x, torch.zeros((B, padding_channels, T, H, W), dtype=x.dtype, device=x.device)], dim=1)
else:
assert x.shape[1] == self.in_channels, f"Expected {self.in_channels} channels, got {x.shape[1]}"
return super().forward(
x=x,
timesteps=timesteps,
crossattn_emb=crossattn_emb,
crossattn_mask=crossattn_mask,
fps=fps,
image_size=image_size,
padding_mask=padding_mask,
scalar_feature=scalar_feature,
data_type=data_type,
condition_video_augment_sigma=condition_video_augment_sigma,
**kwargs,
)
def forward_before_blocks(
self,
x: torch.Tensor,
timesteps: torch.Tensor,
crossattn_emb: torch.Tensor,
crossattn_mask: Optional[torch.Tensor] = None,
fps: Optional[torch.Tensor] = None,
image_size: Optional[torch.Tensor] = None,
padding_mask: Optional[torch.Tensor] = None,
scalar_feature: Optional[torch.Tensor] = None,
data_type: Optional[DataType] = DataType.VIDEO,
latent_condition: Optional[torch.Tensor] = None,
latent_condition_sigma: Optional[torch.Tensor] = None,
condition_video_augment_sigma: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
"""
Args:
x: (B, C, T, H, W) tensor of spatial-temp inputs
timesteps: (B, ) tensor of timesteps
crossattn_emb: (B, N, D) tensor of cross-attention embeddings
crossattn_mask: (B, N) tensor of cross-attention masks
condition_video_augment_sigma: (B, T) tensor of sigma value for the conditional input augmentation
"""
del kwargs
assert isinstance(
data_type, DataType
), f"Expected DataType, got {type(data_type)}. We need discuss this flag later."
original_shape = x.shape
x_B_T_H_W_D, rope_emb_L_1_1_D, extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = self.prepare_embedded_sequence(
x,
fps=fps,
padding_mask=padding_mask,
latent_condition=latent_condition,
latent_condition_sigma=latent_condition_sigma,
)
# logging affline scale information
affline_scale_log_info = {}
timesteps_B_D, adaln_lora_B_3D = self.t_embedder(timesteps.flatten())
affline_emb_B_D = timesteps_B_D
affline_scale_log_info["timesteps_B_D"] = timesteps_B_D.detach()
if scalar_feature is not None:
raise NotImplementedError("Scalar feature is not implemented yet.")
timesteps_B_D = timesteps_B_D + scalar_feature.mean(dim=1)
if self.additional_timestamp_channels:
additional_cond_B_D = self.prepare_additional_timestamp_embedder(
bs=x.shape[0],
fps=fps,
h=image_size[:, 0],
w=image_size[:, 1],
org_h=image_size[:, 2],
org_w=image_size[:, 3],
)
affline_emb_B_D += additional_cond_B_D
affline_scale_log_info["additional_cond_B_D"] = additional_cond_B_D.detach()
if self.add_augment_sigma_embedding:
if condition_video_augment_sigma is None:
# Handling image case
# Note: for video case, when there is not condition frames, we also set it as zero, see extend_model augment_conditional_latent_frames function
assert data_type == DataType.IMAGE, "condition_video_augment_sigma is required for video data type"
condition_video_augment_sigma = torch.zeros_like(timesteps.flatten())
affline_augment_sigma_emb_B_D, adaln_lora_sigma_emb_B_3D = self.augment_sigma_embedder(
condition_video_augment_sigma.flatten()
)
affline_emb_B_D = affline_emb_B_D + affline_augment_sigma_emb_B_D
affline_scale_log_info["affline_emb_B_D"] = affline_emb_B_D.detach()
affline_emb_B_D = self.affline_norm(affline_emb_B_D)
# for logging purpose
self.affline_scale_log_info = affline_scale_log_info
self.affline_emb = affline_emb_B_D
self.crossattn_emb = crossattn_emb
self.crossattn_mask = crossattn_mask
if self.use_cross_attn_mask:
crossattn_mask = crossattn_mask[:, None, None, :].to(dtype=torch.bool) # [B, 1, 1, length]
else:
crossattn_mask = None
if self.blocks["block0"].x_format == "THWBD":
x = rearrange(x_B_T_H_W_D, "B T H W D -> T H W B D")
if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None:
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = rearrange(
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, "B T H W D -> T H W B D"
)
crossattn_emb = rearrange(crossattn_emb, "B M D -> M B D")
if crossattn_mask:
crossattn_mask = rearrange(crossattn_mask, "B M -> M B")
if self.sequence_parallel:
tp_group = parallel_state.get_tensor_model_parallel_group()
# Sequence parallel requires the input tensor to be scattered along the first dimension.
assert self.block_config == "FA-CA-MLP" # Only support this block config for now
T, H, W, B, D = x.shape
# variable name x_T_H_W_B_D is no longer valid. x is reshaped to THW*1*1*b*D and will be reshaped back in FinalLayer
x = x.view(T * H * W, 1, 1, B, D)
assert x.shape[0] % parallel_state.get_tensor_model_parallel_world_size() == 0
x = scatter_along_first_dim(x, tp_group)
if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None:
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.view(
T * H * W, 1, 1, B, D
)
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = scatter_along_first_dim(
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, tp_group
)
elif self.blocks["block0"].x_format == "BTHWD":
x = x_B_T_H_W_D
else:
raise ValueError(f"Unknown x_format {self.blocks[0].x_format}")
output = {
"x": x,
"affline_emb_B_D": affline_emb_B_D,
"crossattn_emb": crossattn_emb,
"crossattn_mask": crossattn_mask,
"rope_emb_L_1_1_D": rope_emb_L_1_1_D,
"adaln_lora_B_3D": adaln_lora_B_3D,
"original_shape": original_shape,
"extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D": extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D,
}
return output