Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""The test for model definition of 2D layers | |
PYTHONPATH=$PWD pytest -v cosmos_predict1/tokenizer/modules/layers2d_test.py | |
""" | |
import os | |
import numpy as np | |
import pytest | |
import torch | |
from torchvision.transforms import CenterCrop | |
from cosmos_predict1.tokenizer.inference.image_lib import ImageTokenizer | |
from cosmos_predict1.tokenizer.inference.utils import read_image | |
from cosmos_predict1.tokenizer.networks import TokenizerConfigs | |
# test configs | |
TEST_CONFIGS = [ | |
("CI8x8-360p", "checkpoints/Cosmos-Tokenize1-CI8x8-360p"), | |
("CI16x16-360p", "checkpoints/Cosmos-Tokenize1-CI16x16-360p"), | |
("DI8x8-360p", "checkpoints/Cosmos-Tokenize1-DI8x8-360p"), | |
("DI16x16-360p", "checkpoints/Cosmos-Tokenize1-DI16x16-360p"), | |
] | |
def image_tensor(): | |
image_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..", "test_data", "image.png") | |
print(f"image_path: {image_path}") | |
image = read_image(image_path) | |
assert image.shape[0] >= 512, "Image height should be at least 512 pixels" | |
assert image.shape[1] >= 512, "Image width should be at least 512 pixels" | |
assert image.shape[2] == 3, "Image should have 3 channels" | |
input_tensor = CenterCrop(512)( | |
torch.from_numpy(image[np.newaxis, ...]).to("cuda").to(torch.bfloat16).permute(0, 3, 1, 2) / 255.0 * 2.0 - 1.0 | |
) | |
return input_tensor | |
def test_tokenizer(config, image_tensor): | |
name, model_id = config | |
continuous = name.startswith(("C", "c")) | |
[ | |
spatial_compression, | |
] = list(map(int, name[2:].split("x")[:1])) | |
print(f"\nTesting tokenizer: {model_id}") | |
print(f"spatial_compression={spatial_compression}") | |
_config = TokenizerConfigs[name.replace("-", "_")].value | |
autoencoder = ImageTokenizer( | |
checkpoint_enc=f"{model_id}/encoder.jit", | |
checkpoint_dec=f"{model_id}/decoder.jit", | |
tokenizer_config=_config, | |
device="cuda", | |
dtype="bfloat16", | |
) | |
try: | |
# Test shape check | |
reconstructed_tensor = auto_shape_check(image_tensor, autoencoder, spatial_compression, continuous) | |
finally: | |
# Cleanup | |
del autoencoder | |
del reconstructed_tensor | |
torch.cuda.empty_cache() | |
torch.cuda.synchronize() | |
def auto_shape_check(input_tensor, autoencoder, spatial_compression, continuous): | |
if continuous: | |
(latent,) = autoencoder.encode(input_tensor) | |
torch.testing.assert_close(latent.shape, (1, 16, 512 // spatial_compression, 512 // spatial_compression)) | |
reconstructed_tensor = autoencoder.decode(latent) | |
else: | |
(indices, codes) = autoencoder.encode(input_tensor) | |
torch.testing.assert_close(indices.shape, (1, 512 // spatial_compression, 512 // spatial_compression)) | |
torch.testing.assert_close(codes.shape, (1, 6, 512 // spatial_compression, 512 // spatial_compression)) | |
reconstructed_tensor = autoencoder.decode(indices) | |
torch.testing.assert_close(reconstructed_tensor.shape, input_tensor.shape) | |
return reconstructed_tensor | |