roll-ai's picture
Upload 381 files
b6af722 verified
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The test for model definition of 3D layers
PYTHONPATH=$PWD pytest -v cosmos_predict1/tokenizer/modules/layers3d_test.py
"""
import os
import numpy as np
import pytest
import torch
from torchvision.transforms import CenterCrop
from cosmos_predict1.tokenizer.inference.utils import read_video
from cosmos_predict1.tokenizer.inference.video_lib import CausalVideoTokenizer
from cosmos_predict1.tokenizer.networks import TokenizerConfigs
# test configs
TEST_CONFIGS = [
("CV8x8x8-720p", "checkpoints/Cosmos-Tokenize1-CV8x8x8-720p"),
("DV8x16x16-720p", "checkpoints/Cosmos-Tokenize1-DV8x16x16-720p"),
("CV4x8x8-360p", "checkpoints/Cosmos-Tokenize1-CV4x8x8-360p"),
("DV4x8x8-360p", "checkpoints/Cosmos-Tokenize1-DV4x8x8-360p"),
]
@pytest.fixture(scope="module")
def video_tensor():
video_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..", "test_data", "video.mp4")
print(f"video_path: {video_path}")
video = read_video(video_path)
assert video.shape[0] >= 17, "Video length should be at least 17 frames"
assert video.shape[1] >= 512, "Video height should be at least 512 pixels"
assert video.shape[2] >= 512, "Video width should be at least 512 pixels"
assert video.shape[3] == 3, "Video should have 3 channels"
input_tensor = CenterCrop(512)(
torch.from_numpy(video[np.newaxis, ...])[:, :17].to("cuda").to(torch.bfloat16).permute(0, 4, 1, 2, 3)
/ 255.0
* 2.0
- 1.0
)
return input_tensor
@pytest.mark.parametrize("config", TEST_CONFIGS)
def test_tokenizer(config, video_tensor):
name, model_id = config
continuous = name.startswith(("C", "c"))
temporal_compression, spatial_compression = list(map(int, name[2:].split("x")[:2]))
print(f"\nTesting tokenizer: {model_id}")
print(f"temporal_compression={temporal_compression}")
print(f"spatial_compression={spatial_compression}")
print(f"checkpoint_enc=checkpoints/{os.path.basename(model_id)}/encoder.jit")
print(f"checkpoint_dec=checkpoints/{os.path.basename(model_id)}/decoder.jit")
_config = TokenizerConfigs[name.replace("-", "_")].value
autoencoder = CausalVideoTokenizer(
checkpoint_enc=f"checkpoints/{os.path.basename(model_id)}/encoder.jit",
checkpoint_dec=f"checkpoints/{os.path.basename(model_id)}/decoder.jit",
tokenizer_config=_config,
device="cuda",
dtype="bfloat16",
)
try:
# Test shape check
reconstructed_tensor = auto_shape_check(
video_tensor, autoencoder, temporal_compression, spatial_compression, continuous
)
finally:
# Cleanup
del autoencoder
del reconstructed_tensor
torch.cuda.empty_cache()
torch.cuda.synchronize()
def auto_shape_check(input_tensor, autoencoder, temporal_compression, spatial_compression, continuous):
if continuous:
(latent,) = autoencoder.encode(input_tensor)
torch.testing.assert_close(
latent.shape,
(1, 16, (17 - 1) // temporal_compression + 1, 512 // spatial_compression, 512 // spatial_compression),
)
reconstructed_tensor = autoencoder.decode(latent)
else:
(indices, codes) = autoencoder.encode(input_tensor)
torch.testing.assert_close(
indices.shape,
(1, (17 - 1) // temporal_compression + 1, 512 // spatial_compression, 512 // spatial_compression),
)
torch.testing.assert_close(
codes.shape,
(1, 6, (17 - 1) // temporal_compression + 1, 512 // spatial_compression, 512 // spatial_compression),
)
reconstructed_tensor = autoencoder.decode(indices)
torch.testing.assert_close(reconstructed_tensor.shape, input_tensor.shape)
return reconstructed_tensor