Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""The continuous image tokenizer with VAE or AE formulation for 2D data.""" | |
from collections import OrderedDict, namedtuple | |
import torch | |
from loguru import logger as logging | |
from torch import nn | |
from cosmos_predict1.tokenizer.modules import ContinuousFormulation, DecoderType, EncoderType | |
NetworkEval = namedtuple("NetworkEval", ["reconstructions", "posteriors", "latent"]) | |
class ContinuousImageTokenizer(nn.Module): | |
def __init__(self, z_channels: int, z_factor: int, latent_channels: int, **kwargs) -> None: | |
super().__init__() | |
self.name = kwargs.get("name", "ContinuousImageTokenizer") | |
self.latent_channels = latent_channels | |
encoder_name = kwargs.get("encoder", EncoderType.Default.name) | |
self.encoder = EncoderType[encoder_name].value(z_channels=z_factor * z_channels, **kwargs) | |
decoder_name = kwargs.get("decoder", DecoderType.Default.name) | |
self.decoder = DecoderType[decoder_name].value(z_channels=z_channels, **kwargs) | |
self.quant_conv = torch.nn.Conv2d(z_factor * z_channels, z_factor * latent_channels, 1) | |
self.post_quant_conv = torch.nn.Conv2d(latent_channels, z_channels, 1) | |
formulation_name = kwargs.get("formulation", ContinuousFormulation.AE.name) | |
self.distribution = ContinuousFormulation[formulation_name].value() | |
logging.info(f"{self.name} based on {formulation_name} formulation, with {kwargs}.") | |
num_parameters = sum(param.numel() for param in self.parameters()) | |
logging.info(f"model={self.name}, num_parameters={num_parameters:,}") | |
logging.info(f"z_channels={z_channels}, latent_channels={self.latent_channels}.") | |
def encoder_jit(self): | |
return nn.Sequential( | |
OrderedDict( | |
[ | |
("encoder", self.encoder), | |
("quant_conv", self.quant_conv), | |
("distribution", self.distribution), | |
] | |
) | |
) | |
def decoder_jit(self): | |
return nn.Sequential( | |
OrderedDict( | |
[ | |
("post_quant_conv", self.post_quant_conv), | |
("decoder", self.decoder), | |
] | |
) | |
) | |
def last_decoder_layer(self): | |
return self.decoder.conv_out | |
def encode(self, x): | |
h = self.encoder(x) | |
moments = self.quant_conv(h) | |
return self.distribution(moments) | |
def decode(self, z): | |
z = self.post_quant_conv(z) | |
dec = self.decoder(z) | |
return dec | |
def forward(self, input) -> dict[str, torch.Tensor] | NetworkEval: | |
latent, posteriors = self.encode(input) | |
dec = self.decode(latent) | |
if self.training: | |
return dict(reconstructions=dec, posteriors=posteriors, latent=latent) | |
return NetworkEval(reconstructions=dec, posteriors=posteriors, latent=latent) | |