Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""The network definition for discrete video tokenizer with VQ, LFQ, FSQ or ResidualFSQ. """ | |
from collections import OrderedDict, namedtuple | |
import torch | |
from loguru import logger as logging | |
from torch import nn | |
from cosmos_predict1.tokenizer.modules import Decoder3DType, DiscreteQuantizer, Encoder3DType | |
from cosmos_predict1.tokenizer.modules.layers3d import CausalConv3d | |
from cosmos_predict1.tokenizer.modules.quantizers import InvQuantizerJit | |
NetworkEval = namedtuple("NetworkEval", ["reconstructions", "quant_loss", "quant_info"]) | |
class CausalDiscreteVideoTokenizer(nn.Module): | |
def __init__(self, z_channels: int, z_factor: int, embedding_dim: int, **kwargs) -> None: | |
super().__init__() | |
self.name = kwargs.get("name", "CausalDiscreteVideoTokenizer") | |
self.embedding_dim = embedding_dim | |
encoder_name = kwargs.get("encoder", Encoder3DType.BASE.name) | |
self.encoder = Encoder3DType[encoder_name].value(z_channels=z_factor * z_channels, **kwargs) | |
decoder_name = kwargs.get("decoder", Decoder3DType.BASE.name) | |
self.decoder = Decoder3DType[decoder_name].value(z_channels=z_channels, **kwargs) | |
self.quant_conv = CausalConv3d(z_factor * z_channels, embedding_dim, kernel_size=1, padding=0) | |
self.post_quant_conv = CausalConv3d(embedding_dim, z_channels, kernel_size=1, padding=0) | |
quantizer_name = kwargs.get("quantizer", DiscreteQuantizer.RESFSQ.name) | |
if quantizer_name == DiscreteQuantizer.VQ.name: | |
assert "num_embeddings" in kwargs, f"`num_embeddings` must be provided for {quantizer_name}." | |
kwargs.update(dict(embedding_dim=embedding_dim)) | |
elif quantizer_name == DiscreteQuantizer.LFQ.name: | |
assert "codebook_size" in kwargs, f"`codebook_size` must be provided for {quantizer_name}." | |
assert "codebook_dim" in kwargs, f"`codebook_dim` must be provided for {quantizer_name}." | |
elif quantizer_name == DiscreteQuantizer.FSQ.name: | |
assert "levels" in kwargs, f"`levels` must be provided for {quantizer_name}." | |
elif quantizer_name == DiscreteQuantizer.RESFSQ.name: | |
assert "levels" in kwargs, f"`levels` must be provided for {quantizer_name}." | |
assert "num_quantizers" in kwargs, f"`num_quantizers` must be provided for {quantizer_name}." | |
self.quantizer = DiscreteQuantizer[quantizer_name].value(**kwargs) | |
logging.info(f"{self.name} based on {quantizer_name}-VAE, with {kwargs}.") | |
num_parameters = sum(param.numel() for param in self.parameters()) | |
logging.info(f"model={self.name}, num_parameters={num_parameters:,}") | |
logging.info(f"z_channels={z_channels}, embedding_dim={self.embedding_dim}.") | |
def to(self, *args, **kwargs): | |
setattr(self.quantizer, "dtype", kwargs.get("dtype", torch.bfloat16)) | |
return super(CausalDiscreteVideoTokenizer, self).to(*args, **kwargs) | |
def encoder_jit(self): | |
return nn.Sequential( | |
OrderedDict( | |
[ | |
("encoder", self.encoder), | |
("quant_conv", self.quant_conv), | |
("quantizer", self.quantizer), | |
] | |
) | |
) | |
def decoder_jit(self): | |
return nn.Sequential( | |
OrderedDict( | |
[ | |
("inv_quant", InvQuantizerJit(self.quantizer)), | |
("post_quant_conv", self.post_quant_conv), | |
("decoder", self.decoder), | |
] | |
) | |
) | |
def last_decoder_layer(self): | |
return self.decoder.conv_out | |
def encode(self, x): | |
h = self.encoder(x) | |
h = self.quant_conv(h) | |
return self.quantizer(h) | |
def decode(self, quant): | |
quant = self.post_quant_conv(quant) | |
return self.decoder(quant) | |
def decode_code(self, code_b): | |
quant_b = self.quantizer.indices_to_codes(code_b) | |
quant_b = self.post_quant_conv(quant_b) | |
return self.decoder(quant_b) | |
def forward(self, input): | |
quant_info, quant_codes, quant_loss = self.encode(input) | |
reconstructions = self.decode(quant_codes) | |
if self.training: | |
return dict( | |
reconstructions=reconstructions, | |
quant_loss=quant_loss, | |
quant_info=quant_info, | |
) | |
return NetworkEval( | |
reconstructions=reconstructions, | |
quant_loss=quant_loss, | |
quant_info=quant_info, | |
) | |