roll-ai's picture
Upload 381 files
b6af722 verified
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Default config for cosmos/tokenizer project."""
from typing import Any, List
import attrs
from cosmos_predict1.tokenizer.training.configs.base.model import DefaultModelConfig
from cosmos_predict1.tokenizer.training.configs.registry import register_configs
from cosmos_predict1.tokenizer.training.trainer import TokenizerTrainer
from cosmos_predict1.utils import config
from cosmos_predict1.utils.config_helper import import_all_modules_from_package
@attrs.define(slots=False)
class Config(config.Config):
defaults: List[Any] = attrs.field(
factory=lambda: [
"_self_",
{"data_train": "mock_video720"},
{"data_val": "mock_video720"},
{"optimizer": "fused_adam"},
{"scheduler": "warmup"},
{"network": "continuous_factorized_video"},
{"loss": "video"},
{"metric": "reconstruction"},
{"checkpoint": "local"},
{"callbacks": "basic"},
{"experiment": None},
]
)
def make_config():
c = Config(
model=DefaultModelConfig,
optimizer=None,
scheduler=None,
dataloader_train=None,
dataloader_val=None,
checkpoint=None,
)
c.job.project = "posttraining"
c.job.group = "debug"
c.job.name = "default_${now:%Y-%m-%d}_${now:%H-%M-%S}"
c.trainer.type = TokenizerTrainer
c.trainer.run_validation = True
c.trainer.seed = 1234
c.trainer.max_iter = 10_000_000
c.trainer.validation_iter = 5000
c.trainer.max_val_iter = 1
c.trainer.logging_iter = 100
c.trainer.callbacks = None
c.trainer.ddp.static_graph = True
c.trainer.ddp.find_unused_parameters = False
register_configs()
# experiment config are defined in the experiment folder
# call import_all_modules_from_package to register them
import_all_modules_from_package("cosmos_predict1.tokenizer.training.configs.experiments")
return c