roll-ai's picture
Upload 381 files
b6af722 verified
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Additional augmentors for image and video training loops."""
from typing import Any, Optional
import omegaconf
import torch
import torchvision.transforms.functional as transforms_F
from loguru import logger as logging
from cosmos_predict1.tokenizer.training.datasets.utils import obtain_augmentation_size, obtain_image_size
from cosmos_predict1.utils import log
class Augmentor:
def __init__(self, input_keys: list, output_keys: Optional[list] = None, args: Optional[dict] = None) -> None:
r"""Base augmentor class
Args:
input_keys (list): List of input keys
output_keys (list): List of output keys
args (dict): Arguments associated with the augmentation
"""
self.input_keys = input_keys
self.output_keys = output_keys
self.args = args
def __call__(self, *args: Any, **kwds: Any) -> Any:
raise ValueError("Augmentor not implemented")
class LossMask(Augmentor):
def __init__(self, input_keys: list, output_keys: Optional[list] = None, args: Optional[dict] = None) -> None:
super().__init__(input_keys, output_keys, args)
def __call__(self, data_dict: dict) -> dict:
r"""Performs data normalization.
Args:
data_dict (dict): Input data dict
Returns:
data_dict (dict): Output dict where images are center cropped.
"""
assert self.args is not None, "Please specify args"
mask_config = self.args["masking"]
input_key = self.input_keys[0]
default_mask = torch.ones_like(data_dict[input_key])
loss_mask = mask_config["nonhuman_mask"] * default_mask
for curr_key in mask_config:
if curr_key not in self.input_keys:
continue
curr_mask = data_dict[curr_key]
curr_weight = mask_config[curr_key]
curr_loss_mask = curr_mask * curr_weight + (1 - curr_mask) * loss_mask
loss_mask = torch.max(curr_loss_mask, loss_mask)
_ = data_dict.pop(curr_key)
data_dict["loss_mask"] = loss_mask
return data_dict
class UnsqueezeImage(Augmentor):
def __init__(self, input_keys: list, output_keys: Optional[list] = None, args: Optional[dict] = None) -> None:
super().__init__(input_keys, output_keys, args)
def __call__(self, data_dict: dict) -> dict:
r"""Performs horizontal flipping.
Args:
data_dict (dict): Input data dict
Returns:
data_dict (dict): Output dict where images are center cropped.
"""
for key in self.input_keys:
data_dict[key] = data_dict[key].unsqueeze(1)
return data_dict
class RandomReverse(Augmentor):
def __init__(self, input_keys: list, output_keys: Optional[list] = None, args: Optional[dict] = None) -> None:
super().__init__(input_keys, output_keys, args)
def __call__(self, data_dict: dict) -> dict:
r"""Performs random temporal reversing of frames.
Args:
data_dict (dict): Input data dict, CxTxHxW
Returns:
data_dict (dict): Output dict where videos are randomly reversed.
"""
assert self.args is not None
p = self.args.get("prob", 0.5)
coin_flip = torch.rand(1).item() <= p
for key in self.input_keys:
if coin_flip:
data_dict[key] = torch.flip(data_dict[key], dims=[1])
return data_dict
class RenameInputKeys(Augmentor):
def __init__(self, input_keys: list, output_keys: Optional[list] = None, args: Optional[dict] = None) -> None:
super().__init__(input_keys, output_keys, args)
def __call__(self, data_dict: dict) -> dict:
r"""Rename the input keys from the data dict.
Args:
data_dict (dict): Input data dict
Returns:
data_dict (dict): Output dict with keys renamed.
"""
assert len(self.input_keys) == len(self.output_keys)
for input_key, output_key in zip(self.input_keys, self.output_keys):
if input_key in data_dict:
data_dict[output_key] = data_dict.pop(input_key)
return data_dict
class CropResizeAugmentor(Augmentor):
def __init__(
self,
input_keys: list,
output_keys: Optional[list] = None,
crop_args: Optional[dict] = None,
resize_args: Optional[dict] = None,
args: Optional[dict] = None,
) -> None:
super().__init__(input_keys, output_keys, args)
self.crop_args = crop_args
self.resize_args = resize_args
self.crop_op = RandomCrop(input_keys, output_keys, crop_args)
self.resize_op = ResizeSmallestSideAspectPreserving(input_keys, output_keys, resize_args)
def __call__(self, data_dict: dict) -> dict:
r"""Performs random temporal reversing of frames.
Args:
data_dict (dict): Input data dict
Returns:
data_dict (dict): Output dict where videso are randomly reversed.
"""
assert self.args is not None
p = self.args.get("prob", 0.1)
if p > 0.0:
crop_img_size = obtain_augmentation_size(data_dict, self.crop_args)
crop_width, crop_height = crop_img_size
orig_w, orig_h = obtain_image_size(data_dict, self.input_keys)
if orig_w < crop_width or orig_h < crop_height:
log.warning(
f"Data size ({orig_w}, {orig_h}) is smaller than crop size ({crop_width}, {crop_height}), skip the crop augmentation."
)
coin_flip = torch.rand(1).item() <= p
if coin_flip and crop_width <= orig_w and crop_height <= orig_h:
data_dict = self.crop_op(data_dict)
return data_dict
data_dict = self.resize_op(data_dict)
data_dict = self.crop_op(data_dict)
return data_dict
class CenterCrop(Augmentor):
def __init__(self, input_keys: list, output_keys: Optional[list] = None, args: Optional[dict] = None) -> None:
super().__init__(input_keys, output_keys, args)
def __call__(self, data_dict: dict) -> dict:
r"""Performs center crop.
Args:
data_dict (dict): Input data dict
Returns:
data_dict (dict): Output dict where images are center cropped.
We also save the cropping parameters in the aug_params dict
so that it will be used by other transforms.
"""
assert (self.args is not None) and ("size" in self.args), "Please specify size in args"
img_size = obtain_augmentation_size(data_dict, self.args)
width, height = img_size
orig_w, orig_h = obtain_image_size(data_dict, self.input_keys)
for key in self.input_keys:
data_dict[key] = transforms_F.center_crop(data_dict[key], [height, width])
# We also add the aug params we use. This will be useful for other transforms
crop_x0 = (orig_w - width) // 2
crop_y0 = (orig_h - height) // 2
cropping_params = {
"resize_w": orig_w,
"resize_h": orig_h,
"crop_x0": crop_x0,
"crop_y0": crop_y0,
"crop_w": width,
"crop_h": height,
}
if "aug_params" not in data_dict:
data_dict["aug_params"] = dict()
data_dict["aug_params"]["cropping"] = cropping_params
data_dict["padding_mask"] = torch.zeros((1, cropping_params["crop_h"], cropping_params["crop_w"]))
return data_dict
class RandomCrop(Augmentor):
def __init__(self, input_keys: list, output_keys: Optional[list] = None, args: Optional[dict] = None) -> None:
super().__init__(input_keys, output_keys, args)
def __call__(self, data_dict: dict) -> dict:
r"""Performs random crop.
Args:
data_dict (dict): Input data dict
Returns:
data_dict (dict): Output dict where images are center cropped.
We also save the cropping parameters in the aug_params dict
so that it will be used by other transforms.
"""
img_size = obtain_augmentation_size(data_dict, self.args)
width, height = img_size
orig_w, orig_h = obtain_image_size(data_dict, self.input_keys)
# Obtaining random crop coords
try:
crop_x0 = int(torch.randint(0, orig_w - width + 1, size=(1,)).item())
crop_y0 = int(torch.randint(0, orig_h - height + 1, size=(1,)).item())
except Exception as e:
logging.warning(
f"Random crop failed. Performing center crop, original_size(wxh): {orig_w}x{orig_h}, random_size(wxh): {width}x{height}"
)
for key in self.input_keys:
data_dict[key] = transforms_F.center_crop(data_dict[key], [height, width])
crop_x0 = (orig_w - width) // 2
crop_y0 = (orig_h - height) // 2
# We also add the aug params we use. This will be useful for other transforms
cropping_params = {
"resize_w": orig_w,
"resize_h": orig_h,
"crop_x0": crop_x0,
"crop_y0": crop_y0,
"crop_w": width,
"crop_h": height,
}
if "aug_params" not in data_dict:
data_dict["aug_params"] = dict()
data_dict["aug_params"]["cropping"] = cropping_params
# We must perform same random cropping for all input keys
for key in self.input_keys:
data_dict[key] = transforms_F.crop(data_dict[key], crop_y0, crop_x0, height, width)
return data_dict
class HorizontalFlip(Augmentor):
def __init__(self, input_keys: list, output_keys: Optional[list] = None, args: Optional[dict] = None) -> None:
super().__init__(input_keys, output_keys, args)
def __call__(self, data_dict: dict) -> dict:
r"""Performs horizontal flipping.
Args:
data_dict (dict): Input data dict
Returns:
data_dict (dict): Output dict where images are center cropped.
"""
flip_enabled = getattr(self.args, "enabled", True)
if flip_enabled:
p = getattr(self.args, "prob", 0.5)
coin_flip = torch.rand(1).item() > p
for key in self.input_keys:
if coin_flip:
data_dict[key] = transforms_F.hflip(data_dict[key])
return data_dict
class Normalize(Augmentor):
def __init__(self, input_keys: list, output_keys: Optional[list] = None, args: Optional[dict] = None) -> None:
super().__init__(input_keys, output_keys, args)
def __call__(self, data_dict: dict) -> dict:
r"""Performs data normalization.
Args:
data_dict (dict): Input data dict
Returns:
data_dict (dict): Output dict where images are center cropped.
"""
assert self.args is not None, "Please specify args"
mean = self.args["mean"]
std = self.args["std"]
for key in self.input_keys:
if isinstance(data_dict[key], torch.Tensor):
data_dict[key] = data_dict[key].to(dtype=torch.get_default_dtype()).div(255)
else:
data_dict[key] = transforms_F.to_tensor(data_dict[key]) # division by 255 is applied in to_tensor()
data_dict[key] = transforms_F.normalize(tensor=data_dict[key], mean=mean, std=std)
return data_dict
class ReflectionPadding(Augmentor):
def __init__(self, input_keys: list, output_keys: Optional[list] = None, args: Optional[dict] = None) -> None:
super().__init__(input_keys, output_keys, args)
def __call__(self, data_dict: dict) -> dict:
r"""Performs reflection padding. This function also returns a padding mask.
Args:
data_dict (dict): Input data dict
Returns:
data_dict (dict): Output dict where images are center cropped.
"""
assert self.args is not None, "Please specify args in augmentation"
if self.output_keys is None:
self.output_keys = self.input_keys
# Obtain image and augmentation sizes
orig_w, orig_h = obtain_image_size(data_dict, self.input_keys)
target_size = obtain_augmentation_size(data_dict, self.args)
assert isinstance(target_size, (tuple, omegaconf.listconfig.ListConfig)), "Please specify target size as tuple"
target_w, target_h = target_size
target_w = int(target_w)
target_h = int(target_h)
# Calculate padding vals
padding_left = int((target_w - orig_w) / 2)
padding_right = target_w - orig_w - padding_left
padding_top = int((target_h - orig_h) / 2)
padding_bottom = target_h - orig_h - padding_top
padding_vals = [padding_left, padding_top, padding_right, padding_bottom]
for inp_key, out_key in zip(self.input_keys, self.output_keys):
if max(padding_vals[0], padding_vals[2]) >= orig_w or max(padding_vals[1], padding_vals[3]) >= orig_h:
# In this case, we can't perform reflection padding. This is because padding values
# are larger than the image size. So, perform edge padding instead.
data_dict[out_key] = transforms_F.pad(data_dict[inp_key], padding_vals, padding_mode="edge")
else:
# Perform reflection padding
data_dict[out_key] = transforms_F.pad(data_dict[inp_key], padding_vals, padding_mode="reflect")
if out_key != inp_key:
del data_dict[inp_key]
# Return padding_mask when padding is performed.
# Padding mask denotes which pixels are padded.
padding_mask = torch.ones((1, target_h, target_w))
padding_mask[:, padding_top : (padding_top + orig_h), padding_left : (padding_left + orig_w)] = 0
data_dict["padding_mask"] = padding_mask
data_dict["image_size"] = torch.tensor([target_h, target_w, orig_h, orig_w], dtype=torch.float)
return data_dict
class ResizeSmallestSide(Augmentor):
def __init__(self, input_keys: list, output_keys: Optional[list] = None, args: Optional[dict] = None) -> None:
super().__init__(input_keys, output_keys, args)
def __call__(self, data_dict: dict) -> dict:
r"""Performs resizing to smaller side
Args:
data_dict (dict): Input data dict
Returns:
data_dict (dict): Output dict where images are resized
"""
if self.output_keys is None:
self.output_keys = self.input_keys
assert self.args is not None, "Please specify args in augmentations"
for inp_key, out_key in zip(self.input_keys, self.output_keys):
out_size = obtain_augmentation_size(data_dict, self.args)
assert isinstance(out_size, int), "Arg size in resize should be an integer"
data_dict[out_key] = transforms_F.resize(
data_dict[inp_key],
size=out_size, # type: ignore
interpolation=getattr(self.args, "interpolation", transforms_F.InterpolationMode.BICUBIC),
antialias=True,
)
if out_key != inp_key:
del data_dict[inp_key]
return data_dict
class ResizeLargestSide(Augmentor):
def __init__(self, input_keys: list, output_keys: Optional[list] = None, args: Optional[dict] = None) -> None:
super().__init__(input_keys, output_keys, args)
def __call__(self, data_dict: dict) -> dict:
r"""Performs resizing to larger side
Args:
data_dict (dict): Input data dict
Returns:
data_dict (dict): Output dict where images are resized
"""
if self.output_keys is None:
self.output_keys = self.input_keys
assert self.args is not None, "Please specify args in augmentations"
for inp_key, out_key in zip(self.input_keys, self.output_keys):
out_size = obtain_augmentation_size(data_dict, self.args)
assert isinstance(out_size, int), "Arg size in resize should be an integer"
orig_w, orig_h = obtain_image_size(data_dict, self.input_keys)
scaling_ratio = min(out_size / orig_w, out_size / orig_h)
target_size = [int(scaling_ratio * orig_h), int(scaling_ratio * orig_w)]
data_dict[out_key] = transforms_F.resize(
data_dict[inp_key],
size=target_size,
interpolation=getattr(self.args, "interpolation", transforms_F.InterpolationMode.BICUBIC),
antialias=True,
)
if out_key != inp_key:
del data_dict[inp_key]
return data_dict
class ResizeSmallestSideAspectPreserving(Augmentor):
def __init__(self, input_keys: list, output_keys: Optional[list] = None, args: Optional[dict] = None) -> None:
super().__init__(input_keys, output_keys, args)
def __call__(self, data_dict: dict) -> dict:
r"""Performs aspect-ratio preserving resizing.
Image is resized to the dimension which has the smaller ratio of (size / target_size).
First we compute (w_img / w_target) and (h_img / h_target) and resize the image
to the dimension that has the smaller of these ratios.
Args:
data_dict (dict): Input data dict
Returns:
data_dict (dict): Output dict where images are resized
"""
if self.output_keys is None:
self.output_keys = self.input_keys
assert self.args is not None, "Please specify args in augmentations"
img_size = obtain_augmentation_size(data_dict, self.args)
assert isinstance(
img_size, (tuple, omegaconf.listconfig.ListConfig)
), f"Arg size in resize should be a tuple, get {type(img_size)}, {img_size}"
img_w, img_h = img_size
orig_w, orig_h = obtain_image_size(data_dict, self.input_keys)
scaling_ratio = max((img_w / orig_w), (img_h / orig_h))
target_size = (int(scaling_ratio * orig_h + 0.5), int(scaling_ratio * orig_w + 0.5))
assert (
target_size[0] >= img_h and target_size[1] >= img_w
), f"Resize error. orig {(orig_w, orig_h)} desire {img_size} compute {target_size}"
for inp_key, out_key in zip(self.input_keys, self.output_keys):
data_dict[out_key] = transforms_F.resize(
data_dict[inp_key],
size=target_size, # type: ignore
interpolation=getattr(self.args, "interpolation", transforms_F.InterpolationMode.BICUBIC),
antialias=True,
)
if out_key != inp_key:
del data_dict[inp_key]
return data_dict
class ResizeLargestSideAspectPreserving(Augmentor):
def __init__(self, input_keys: list, output_keys: Optional[list] = None, args: Optional[dict] = None) -> None:
super().__init__(input_keys, output_keys, args)
def __call__(self, data_dict: dict) -> dict:
r"""Performs aspect-ratio preserving resizing.
Image is resized to the dimension which has the larger ratio of (size / target_size).
First we compute (w_img / w_target) and (h_img / h_target) and resize the image
to the dimension that has the larger of these ratios.
Args:
data_dict (dict): Input data dict
Returns:
data_dict (dict): Output dict where images are resized
"""
if self.output_keys is None:
self.output_keys = self.input_keys
assert self.args is not None, "Please specify args in augmentations"
img_size = obtain_augmentation_size(data_dict, self.args)
assert isinstance(
img_size, (tuple, omegaconf.listconfig.ListConfig)
), f"Arg size in resize should be a tuple, get {type(img_size)}, {img_size}"
img_w, img_h = img_size
orig_w, orig_h = obtain_image_size(data_dict, self.input_keys)
scaling_ratio = min((img_w / orig_w), (img_h / orig_h))
target_size = (int(scaling_ratio * orig_h + 0.5), int(scaling_ratio * orig_w + 0.5))
assert (
target_size[0] <= img_h and target_size[1] <= img_w
), f"Resize error. orig {(orig_w, orig_h)} desire {img_size} compute {target_size}"
for inp_key, out_key in zip(self.input_keys, self.output_keys):
data_dict[out_key] = transforms_F.resize(
data_dict[inp_key],
size=target_size, # type: ignore
interpolation=getattr(self.args, "interpolation", transforms_F.InterpolationMode.BICUBIC),
antialias=True,
)
if out_key != inp_key:
del data_dict[inp_key]
return data_dict