roll-ai's picture
Upload 381 files
b6af722 verified
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Implementations of dataset settings and augmentations for tokenization
Run this command to interactively debug:
python3 -m cosmos_predict1.tokenizer.training.datasets.dataset_provider
"""
from cosmos_predict1.tokenizer.training.datasets.augmentation_provider import (
video_train_augmentations,
video_val_augmentations,
)
from cosmos_predict1.tokenizer.training.datasets.utils import categorize_aspect_and_store
from cosmos_predict1.tokenizer.training.datasets.video_dataset import Dataset
from cosmos_predict1.utils.lazy_config import instantiate
_VIDEO_PATTERN_DICT = {
"hdvila_video": "datasets/hdvila/videos/*.mp4",
}
def apply_augmentations(data_dict, augmentations_dict):
"""
Loop over each LazyCall object and apply it to data_dict in place.
"""
for aug_name, lazy_aug in augmentations_dict.items():
aug_instance = instantiate(lazy_aug)
data_dict = aug_instance(data_dict)
return data_dict
class AugmentDataset(Dataset):
def __init__(self, base_dataset, augmentations_dict):
"""
base_dataset: the video dataset instance
augmentations_dict: the dictionary returned by
video_train_augmentations() or video_val_augmentations()
"""
self.base_dataset = base_dataset
# Pre-instantiate every augmentation ONCE:
self.augmentations = []
for aug_name, lazy_aug in augmentations_dict.items():
aug_instance = instantiate(lazy_aug) # build the actual augmentation
self.augmentations.append((aug_name, aug_instance))
def __len__(self):
return len(self.base_dataset)
def __getitem__(self, index):
# Get the raw sample from the base dataset
data = self.base_dataset[index]
data = categorize_aspect_and_store(data)
# Apply each pre-instantiated augmentation
for aug_name, aug_instance in self.augmentations:
data = aug_instance(data)
return data
def dataset_entry(
dataset_name: str,
dataset_type: str,
is_train: bool = True,
resolution="720",
crop_height=256,
num_video_frames=25,
) -> AugmentDataset:
if dataset_type != "video":
raise ValueError(f"Dataset type {dataset_type} is not supported")
# Instantiate the video dataset
base_dataset = Dataset(
video_pattern=_VIDEO_PATTERN_DICT[dataset_name.lower()],
num_video_frames=num_video_frames,
)
# Pick the training or validation augmentations
if is_train:
aug_dict = video_train_augmentations(
input_keys=["video"], # adjust if necessary
resolution=resolution,
crop_height=crop_height,
)
else:
aug_dict = video_val_augmentations(
input_keys=["video"],
resolution=resolution,
crop_height=crop_height,
)
# Wrap the dataset with the augmentations
return AugmentDataset(base_dataset, aug_dict)
if __name__ == "__main__":
# Example usage / quick test
dataset = dataset_entry(
dataset_name="davis_video",
dataset_type="video",
is_train=False,
resolution="720",
crop_height=256,
num_video_frames=25,
)
# 2) Print out some basic info:
print(f"Total samples in dataset: {len(dataset)}")
# 3) Grab one sample (or a few) to check shapes, keys, etc.
if len(dataset) > 0:
sample_idx = 0
sample = dataset[sample_idx]
print(f"Sample index {sample_idx} keys: {list(sample.keys())}")
if "video" in sample:
print("Video shape:", sample["video"].shape)
if "video_name" in sample:
print("Video metadata:", sample["video_name"])
print("---\nSample loaded successfully.\n")
else:
print("Dataset has no samples!")