roll-ai's picture
Upload 381 files
b6af722 verified
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""LPIPS loss.
Adapted from: github.com/CompVis/stable-diffusion/ldm/modules/losses/contperceptual.py.
"""
import hashlib
import os
from collections import namedtuple
import requests
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint as checkpoint
from loguru import logger as logging
from torchvision import models
from tqdm import tqdm
from cosmos_predict1.utils.distributed import is_rank0
_TORCH_HOME = os.getenv("TORCH_HOME", "/mnt/workspace/.cache/torch")
_URL_MAP = {"vgg_lpips": "https://heibox.uni-heidelberg.de/f/607503859c864bc1b30b/?dl=1"}
_CKPT_MAP = {"vgg_lpips": "vgg.pth"}
_MD5_MAP = {"vgg_lpips": "d507d7349b931f0638a25a48a722f98a"}
def _download(url, local_path, chunk_size=1024):
os.makedirs(os.path.split(local_path)[0], exist_ok=True)
with requests.get(url, stream=True) as r:
total_size = int(r.headers.get("content-length", 0))
with tqdm(total=total_size, unit="B", unit_scale=True) as pbar:
with open(local_path, "wb") as f:
for data in r.iter_content(chunk_size=chunk_size):
if data:
f.write(data)
pbar.update(chunk_size)
def _md5_hash(path):
with open(path, "rb") as f:
content = f.read()
return hashlib.md5(content).hexdigest()
def _get_ckpt_path(name, root, check=False):
assert name in _URL_MAP
path = os.path.join(root, _CKPT_MAP[name])
if not os.path.exists(path) or (check and not _md5_hash(path) == _MD5_MAP[name]):
logging.info("Downloading {} model from {} to {}".format(name, _URL_MAP[name], path))
_download(_URL_MAP[name], path)
md5 = _md5_hash(path)
assert md5 == _MD5_MAP[name], md5
return path
class LPIPS(nn.Module):
def __init__(self, checkpoint_activations: bool = False):
super().__init__()
self.scaling_layer = ScalingLayer()
self.chns = [64, 128, 256, 512, 512] # vg16 features
self.net = vgg16(pretrained=True, requires_grad=False, checkpoint_activations=checkpoint_activations)
if dist.is_initialized() and not is_rank0():
dist.barrier()
self.load_from_pretrained()
if dist.is_initialized() and is_rank0():
dist.barrier()
for param in self.parameters():
param.requires_grad = False
def load_from_pretrained(self, name="vgg_lpips"):
ckpt = _get_ckpt_path(name, f"{_TORCH_HOME}/hub/checkpoints")
self.load_state_dict(torch.load(ckpt, map_location=torch.device("cpu")), strict=False)
logging.info("Loaded pretrained LPIPS loss from {}".format(ckpt))
@classmethod
def from_pretrained(cls, name="vgg_lpips"):
if name != "vgg_lpips":
raise NotImplementedError
model = cls()
ckpt = _get_ckpt_path(name)
model.load_state_dict(torch.load(ckpt, map_location=torch.device("cpu")), strict=False)
return model
def forward(self, input, target):
in0_input, in1_input = (self.scaling_layer(input), self.scaling_layer(target))
outs0, outs1 = self.net(in0_input), self.net(in1_input)
feats0, feats1, diffs = {}, {}, {}
for kk in range(len(self.chns)):
feats0[kk], feats1[kk] = normalize_tensor(outs0[kk]), normalize_tensor(outs1[kk])
diffs[kk] = (feats0[kk] - feats1[kk]) ** 2
res = [diffs[kk].mean([1, 2, 3], keepdim=True) for kk in range(len(self.chns))]
val = res[0]
for l in range(1, len(self.chns)):
val += res[l]
return val
class ScalingLayer(nn.Module):
def __init__(self):
super(ScalingLayer, self).__init__()
self.register_buffer("shift", torch.Tensor([-0.030, -0.088, -0.188])[None, :, None, None], persistent=False)
self.register_buffer("scale", torch.Tensor([0.458, 0.448, 0.450])[None, :, None, None], persistent=False)
def forward(self, inp):
return (inp - self.shift) / self.scale
def normalize_tensor(x, eps=1e-10):
norm_factor = torch.sqrt(torch.sum(x**2, dim=1, keepdim=True))
return x / (norm_factor + eps)
class vgg16(torch.nn.Module):
def __init__(self, requires_grad=False, pretrained=True, checkpoint_activations: bool = False):
super(vgg16, self).__init__()
vgg_pretrained_features = models.vgg16(pretrained=pretrained).features
self.checkpoint_activations = checkpoint_activations
self.slice1 = torch.nn.Sequential()
self.slice2 = torch.nn.Sequential()
self.slice3 = torch.nn.Sequential()
self.slice4 = torch.nn.Sequential()
self.slice5 = torch.nn.Sequential()
self.N_slices = 5
for x in range(4):
self.slice1.add_module(str(x), vgg_pretrained_features[x])
for x in range(4, 9):
self.slice2.add_module(str(x), vgg_pretrained_features[x])
for x in range(9, 16):
self.slice3.add_module(str(x), vgg_pretrained_features[x])
for x in range(16, 23):
self.slice4.add_module(str(x), vgg_pretrained_features[x])
for x in range(23, 30):
self.slice5.add_module(str(x), vgg_pretrained_features[x])
if not requires_grad:
for param in self.parameters():
param.requires_grad = False
def forward(self, X):
if self.checkpoint_activations:
h = checkpoint.checkpoint(self.slice1, X, use_reentrant=False)
else:
h = self.slice1(X)
h_relu1_2 = h
if self.checkpoint_activations:
h = checkpoint.checkpoint(self.slice2, h, use_reentrant=False)
else:
h = self.slice2(h)
h_relu2_2 = h
if self.checkpoint_activations:
h = checkpoint.checkpoint(self.slice3, h, use_reentrant=False)
else:
h = self.slice3(h)
h_relu3_3 = h
if self.checkpoint_activations:
h = checkpoint.checkpoint(self.slice4, h, use_reentrant=False)
else:
h = self.slice4(h)
h_relu4_3 = h
if self.checkpoint_activations:
h = checkpoint.checkpoint(self.slice5, h, use_reentrant=False)
else:
h = self.slice5(h)
h_relu5_3 = h
vgg_outputs = namedtuple("VggOutputs", ["relu1_2", "relu2_2", "relu3_3", "relu4_3", "relu5_3"])
out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3)
return out