Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import os | |
from abc import ABC | |
from typing import Any | |
import numpy as np | |
import torch | |
from cosmos_predict1.auxiliary.guardrail.common import presets as guardrail_presets | |
from cosmos_predict1.auxiliary.t5_text_encoder import CosmosT5TextEncoder | |
class BaseWorldGenerationPipeline(ABC): | |
def __init__( | |
self, | |
inference_type: str | None = None, | |
checkpoint_dir: str | None = None, | |
checkpoint_name: str | None = None, | |
has_text_input: bool = False, | |
offload_network: bool = False, | |
offload_tokenizer: bool = False, | |
offload_text_encoder_model: bool = False, | |
offload_guardrail_models: bool = False, | |
disable_guardrail: bool = False, | |
): | |
"""Initialize base world generation pipeline. | |
This abstract base class provides core functionality for world generation models including: | |
- Model loading and initialization | |
- Text encoding and embedding | |
- Safety checks and content filtering | |
- Memory management through model offloading | |
Args: | |
inference_type: The type of inference pipeline ("text2world" or "video2world") | |
checkpoint_dir: Root directory containing model checkpoints | |
checkpoint_name: Name of the specific checkpoint file to load | |
has_text_input: Whether the pipeline takes text input for world generation | |
offload_network: If True, moves main model to CPU after inference | |
offload_tokenizer: If True, moves tokenizer to CPU after use | |
offload_text_encoder_model: If True, moves T5 encoder to CPU after encoding | |
offload_guardrail_models: If True, moves safety models to CPU after checks | |
disable_guardrail: If True, disable guardrail | |
""" | |
self.inference_type = inference_type | |
self.checkpoint_dir = checkpoint_dir | |
self.checkpoint_name = checkpoint_name | |
self.has_text_input = has_text_input | |
# Add offloading flags | |
self.offload_network = offload_network | |
self.offload_tokenizer = offload_tokenizer | |
self.offload_text_encoder_model = offload_text_encoder_model | |
self.offload_guardrail_models = offload_guardrail_models | |
self.disable_guardrail = disable_guardrail | |
# Initialize model instances | |
self.text_guardrail = None | |
self.video_guardrail = None | |
self.text_encoder = None | |
self.model = None | |
self._load_model() | |
if not self.offload_text_encoder_model: | |
self._load_text_encoder_model() | |
if not self.disable_guardrail and not self.offload_guardrail_models: | |
if self.has_text_input: | |
self._load_text_guardrail() | |
self._load_video_guardrail() | |
if not self.offload_network: | |
self._load_network() | |
if not self.offload_tokenizer: | |
self._load_tokenizer() | |
def _load_tokenizer(self): | |
pass | |
def _load_network(self): | |
pass | |
def _load_model(self, checkpoint_name: str) -> Any: | |
"""Load the world generation model from a checkpoint. | |
This abstract method must be implemented by subclasses to load their specific | |
model architecture and weights. | |
Args: | |
checkpoint_name: Path to the model checkpoint file | |
Returns: | |
The loaded model instance | |
Raises: | |
NotImplementedError: Must be implemented by subclasses | |
""" | |
pass | |
def _load_text_encoder_model(self): | |
"""Load the T5 text encoder model. | |
Initializes and loads the T5 encoder model used for converting text prompts | |
into embeddings that condition the world generation model. | |
Returns: | |
Loaded T5 text encoder model instance | |
""" | |
self.text_encoder = CosmosT5TextEncoder(cache_dir=os.path.join(self.checkpoint_dir, "google-t5/t5-11b")) | |
def _load_text_guardrail(self): | |
"""Load text safety classifier models. | |
Initializes models used for checking input prompts against safety policies. | |
Models are loaded from the specified guardrail directory. | |
""" | |
self.text_guardrail = guardrail_presets.create_text_guardrail_runner(checkpoint_dir=self.checkpoint_dir) | |
def _load_video_guardrail(self): | |
"""Load video safety classifier models. | |
Initializes models used for validating generated video content against | |
safety policies. Models are loaded from the specified guardrail directory. | |
""" | |
self.video_guardrail = guardrail_presets.create_video_guardrail_runner(checkpoint_dir=self.checkpoint_dir) | |
def _offload_network(self): | |
if self.model.model: | |
del self.model.model | |
self.model.model = None | |
gc.collect() | |
torch.cuda.empty_cache() | |
def _offload_tokenizer(self): | |
if self.model.tokenizer: | |
del self.model.tokenizer | |
self.model.tokenizer = None | |
gc.collect() | |
torch.cuda.empty_cache() | |
def _offload_guardrail_models(self): | |
"""Offload safety classifier models to reduce memory usage. | |
Moves safety models to CPU and clears GPU memory if they are no longer needed. | |
This helps manage memory when processing multiple inputs sequentially. | |
""" | |
if self.text_guardrail: | |
del self.text_guardrail | |
self.text_guardrail = None | |
if self.video_guardrail: | |
del self.video_guardrail | |
self.video_guardrail = None | |
gc.collect() | |
torch.cuda.empty_cache() | |
def _offload_text_encoder_model(self): | |
"""Offload T5 text encoder to reduce memory usage. | |
Moves the T5 encoder to CPU and clears GPU memory after text encoding is complete. | |
This helps manage memory when processing multiple inputs sequentially. | |
""" | |
if self.text_encoder: | |
del self.text_encoder | |
self.text_encoder = None | |
gc.collect() | |
torch.cuda.empty_cache() | |
def _run_model(self, *args: Any, **kwargs: Any) -> torch.Tensor: | |
"""Generate world latents using the model. | |
This abstract method must be implemented by subclasses to define their specific | |
generation process. | |
Args: | |
*args: Variable positional arguments for model inference | |
**kwargs: Variable keyword arguments for model inference | |
Returns: | |
torch.Tensor: Generated world representation tensor | |
""" | |
pass | |
def _run_model_with_offload(self, *args: Any, **kwargs: Any) -> torch.Tensor: | |
"""Generate world representation with memory management. | |
Handles loading the model before inference and offloading afterward if enabled. | |
This helps minimize GPU memory usage during inference. | |
Args: | |
*args: Arguments passed to _run_model | |
**kwargs: Keyword arguments passed to _run_model | |
Returns: | |
np.ndarray: Generated world representation as numpy array | |
""" | |
pass | |
def _run_guardrail_on_prompt(self, prompt: str) -> bool: | |
"""Check if prompt meets safety requirements. | |
Validates the input prompt against safety policies using loaded guardrail models. | |
Args: | |
prompt: Raw text prompt to validate | |
Returns: | |
bool: True if prompt passes all safety checks, False otherwise | |
""" | |
return guardrail_presets.run_text_guardrail(prompt, self.text_guardrail) | |
def _run_guardrail_on_prompt_with_offload(self, prompt: str) -> bool: | |
"""Check prompt safety with memory management. | |
Validates prompt safety while handling model loading/offloading to manage memory. | |
Args: | |
prompt: Raw text prompt to validate | |
Returns: | |
bool: True if prompt passes all safety checks, False otherwise | |
""" | |
if self.offload_guardrail_models: | |
self._load_text_guardrail() | |
is_safe = self._run_guardrail_on_prompt(prompt) | |
if self.offload_guardrail_models: | |
self._offload_guardrail_models() | |
return is_safe | |
def _run_guardrail_on_video(self, video: np.ndarray) -> np.ndarray | None: | |
"""Check if video meets safety requirements. | |
Validates generated video content against safety policies using guardrail models. | |
Args: | |
video: Video frames to validate | |
Returns: | |
np.ndarray: Processed video if safe, None if unsafe | |
""" | |
return guardrail_presets.run_video_guardrail(video, self.video_guardrail) | |
def _run_guardrail_on_video_with_offload(self, video: np.ndarray) -> np.ndarray | None: | |
"""Check if generated video meets safety requirements. | |
Args: | |
video: Video frames to validate | |
Returns: | |
np.ndarray: Processed video frames if safe, None otherwise | |
Note: | |
Guardrail models are offloaded after checks if enabled. | |
""" | |
if self.offload_guardrail_models: | |
self._load_video_guardrail() | |
video = self._run_guardrail_on_video(video) | |
if self.offload_guardrail_models: | |
self._offload_guardrail_models() | |
return video | |
def _run_text_embedding_on_prompt( | |
self, prompts: list[str], **kwargs: Any | |
) -> tuple[list[torch.Tensor], list[torch.Tensor]]: | |
"""Convert text prompts to embeddings. | |
Processes text prompts into embedding tensors that condition the generation model. | |
Args: | |
prompts: List of text prompts to encode | |
**kwargs: Additional arguments for text encoding | |
Returns: | |
tuple containing: | |
- List of text embedding tensors for each prompt | |
- List of attention masks for each embedding | |
""" | |
embeddings = [] | |
masks = [] | |
for prompt in prompts: | |
embedding, mask = self.text_encoder.encode_prompts( | |
[prompt], | |
**kwargs, | |
) | |
embeddings.append(embedding) | |
masks.append(mask) | |
return embeddings, masks | |
def _run_text_embedding_on_prompt_with_offload( | |
self, prompts: list[str], **kwargs: Any | |
) -> tuple[list[torch.Tensor], list[torch.Tensor]]: | |
"""Convert text prompt into embeddings using T5 encoder. | |
Args: | |
prompt: Processed and validated text prompt | |
Returns: | |
Text embedding tensor to condition diffusion model | |
Note: | |
T5 model is offloaded after encoding if enabled. | |
""" | |
if self.offload_text_encoder_model: | |
self._load_text_encoder_model() | |
embeddings, masks = self._run_text_embedding_on_prompt(prompts, **kwargs) | |
if self.offload_text_encoder_model: | |
self._offload_text_encoder_model() | |
return embeddings, masks | |
def _run_tokenizer_decoding(self, samples: torch.Tensor) -> np.ndarray: | |
"""Decode model outputs into final world representation. | |
This abstract method must be implemented by subclasses to convert raw model | |
outputs into their specific world representation format. | |
Args: | |
samples: Raw output tensor from the generation model | |
Returns: | |
np.ndarray: Decoded world representation | |
""" | |
pass | |
def generate(self, *args: Any, **kwargs: Any): | |
"""Generate world representation. | |
This abstract method must be implemented by subclasses to convert raw model | |
outputs into their specific world representation format. | |
Args: | |
*args: Variable positional arguments for model inference | |
**kwargs: Variable keyword arguments for model inference | |
""" | |
pass | |