Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import IO, Optional, Tuple, Union | |
import numpy as np | |
from cosmos_predict1.utils.easy_io.handlers.base import BaseFileHandler | |
try: | |
from PIL import Image | |
except ImportError: | |
Image = None | |
class PILHandler(BaseFileHandler): | |
format: str | |
str_like = False | |
def load_from_fileobj( | |
self, | |
file: IO[bytes], | |
fmt: str = "pil", | |
size: Optional[Union[int, Tuple[int, int]]] = None, | |
**kwargs, | |
): | |
""" | |
Load an image from a file-like object and return it in a specified format. | |
Args: | |
file (IO[bytes]): A file-like object containing the image data. | |
fmt (str): The format to convert the image into. Options are \ | |
'numpy', 'np', 'npy', 'type' (all return numpy arrays), \ | |
'pil' (returns PIL Image), 'th', 'torch' (returns a torch tensor). | |
size (Optional[Union[int, Tuple[int, int]]]): The new size of the image as a single integer \ | |
or a tuple of (width, height). If specified, the image is resized accordingly. | |
**kwargs: Additional keyword arguments that can be passed to conversion functions. | |
Returns: | |
Image data in the format specified by `fmt`. | |
Raises: | |
IOError: If the image cannot be loaded or processed. | |
ValueError: If the specified format is unsupported. | |
""" | |
try: | |
img = Image.open(file) | |
img.load() # Explicitly load the image data | |
if size is not None: | |
if isinstance(size, int): | |
size = ( | |
size, | |
size, | |
) # create a tuple if only one integer is provided | |
img = img.resize(size, Image.ANTIALIAS) | |
# Return the image in the requested format | |
if fmt in ["numpy", "np", "npy"]: | |
return np.array(img, **kwargs) | |
if fmt == "pil": | |
return img | |
if fmt in ["th", "torch"]: | |
import torch | |
# Convert to tensor | |
img_tensor = torch.from_numpy(np.array(img, **kwargs)) | |
# Convert image from HxWxC to CxHxW | |
if img_tensor.ndim == 3: | |
img_tensor = img_tensor.permute(2, 0, 1) | |
return img_tensor | |
raise ValueError( | |
"Unsupported format. Supported formats are 'numpy', 'np', 'npy', 'pil', 'th', and 'torch'." | |
) | |
except Exception as e: | |
raise IOError(f"Unable to load image: {e}") from e | |
def dump_to_fileobj(self, obj, file: IO[bytes], **kwargs): | |
if "format" not in kwargs: | |
kwargs["format"] = self.format | |
kwargs["format"] = "JPEG" if self.format.lower() == "jpg" else self.format.upper() | |
obj.save(file, **kwargs) | |
def dump_to_str(self, obj, **kwargs): | |
raise NotImplementedError | |