Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import annotations | |
import gc | |
import os | |
import threading | |
import torch | |
from torch.distributed.fsdp import FullOptimStateDictConfig, FullStateDictConfig | |
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP | |
from torch.distributed.fsdp import StateDictType | |
from cosmos_predict1.utils import callback, distributed, log, misc | |
from cosmos_predict1.utils.config import CheckpointConfig, JobConfig | |
from cosmos_predict1.utils.easy_io import easy_io | |
from cosmos_predict1.utils.fsdp_optim_fix import scatter_full_optim_state_dict | |
from cosmos_predict1.utils.model import Model | |
class FSDPCheckpointer: | |
"""The checkpointer class. Supports checkpoint saving/loading to local disk.""" | |
def __init__(self, config_checkpoint: CheckpointConfig, config_job: JobConfig, callbacks: callback.CallBackGroup): | |
"""Constructor of the checkpointer. | |
Args: | |
config_checkpoint (CheckpointConfig): The config object for the checkpointer. | |
""" | |
# Set the callback functions. | |
self.callbacks = callbacks | |
self.checkpoint_dir_local = f"{config_job.path_local}/checkpoints" | |
self.strict_resume = config_checkpoint.strict_resume | |
self.load_path = config_checkpoint.load_path | |
self.load_training_state = config_checkpoint.load_training_state | |
self.save_thread = None | |
self.config_checkpoint = config_checkpoint | |
def _load_ckpt_file_during_init(self): | |
latest_checkpoint_file = self._read_latest_checkpoint_file() | |
if latest_checkpoint_file is not None: | |
# 1. Resume training from latest_checkpoint.txt under the same name. | |
checkpoint_dir = self.checkpoint_dir_local | |
checkpoint_path = os.path.join(checkpoint_dir, latest_checkpoint_file) | |
resume = True | |
log.critical(f"[Checkpoint] Found latest checkpoint file: {latest_checkpoint_file}") | |
log.critical(f"[Checkpoint] Loading from local path: {checkpoint_path}") | |
log.critical("[Checkpoint] Will resume full training state (model, optimizer, scheduler)") | |
else: | |
if self.load_path: | |
# 2. Load the module weights specified by config_checkpoint.path. | |
checkpoint_path = self.load_path | |
resume = self.load_training_state | |
log.critical(f"[Checkpoint] Using specified checkpoint path: {checkpoint_path}") | |
if resume: | |
log.critical("[Checkpoint] Will load complete training state (model, optimizer, scheduler)") | |
else: | |
log.critical("[Checkpoint] Will load model weights only (no optimizer/scheduler state)") | |
else: | |
# 3. Randomly initialize the model parameters and train from scratch. | |
checkpoint_path = None | |
resume = False | |
log.critical("[Checkpoint] No checkpoint path specified") | |
log.critical("[Checkpoint] Starting fresh training with random initialization") | |
return checkpoint_path, resume | |
def load_model_during_init(self, model, is_ema=False, ema_id: int = 0): | |
if ema_id > 0: | |
assert is_ema, "ema_id should be used with is_ema=True" | |
checkpoint_path, _ = self._load_ckpt_file_during_init() | |
if checkpoint_path is not None: | |
tag = "reg" if not is_ema else "ema" | |
default_checkpoint_path = checkpoint_path.replace(".pt", f"_{tag}_model.pt") | |
if not os.path.exists(default_checkpoint_path): | |
default_checkpoint_path = checkpoint_path # starting from the release checkpoint | |
log.warning(f"is_ema={is_ema} model is not found. Loading from {default_checkpoint_path}") | |
if tag == "ema" and ema_id > 0: | |
_checkpoint_path = checkpoint_path.replace(".pt", f"_RANK{ema_id}.pt") | |
_checkpoint_path = _checkpoint_path.replace(".pt", f"_{tag}_model.pt") | |
if self._check_checkpoint_exists(_checkpoint_path, is_raise=False): | |
default_checkpoint_path = _checkpoint_path | |
else: | |
print( | |
f"{distributed.get_rank()}: Checkpoint not found: {_checkpoint_path} " | |
f"(fallback to {default_checkpoint_path})" | |
) | |
checkpoint_path = default_checkpoint_path | |
self._check_checkpoint_exists(checkpoint_path) | |
log.info(f"Loading checkpoint (local): {checkpoint_path}") | |
state_dict = torch.load(checkpoint_path, map_location=lambda storage, loc: storage, weights_only=False) | |
log.success(f"Complete loading checkpoint (local): {checkpoint_path}") | |
log.info("- Loading the model...") | |
if self.strict_resume: | |
log.info(model.load_state_dict(state_dict, strict=self.strict_resume)) | |
else: | |
log.critical("\t Using non-strict model") | |
from cosmos_predict1.diffusion.training.utils.checkpointer import non_strict_load_model | |
log.info(non_strict_load_model(model, state_dict)) | |
log.info("-finish model loading") | |
else: | |
log.info(f"is_ema={is_ema} model is not found and loaded.") | |
def load_optim_scheduler_during_init(self, fsdp_model, optimizer, scheduler): | |
checkpoint_path, resume = self._load_ckpt_file_during_init() | |
log.critical(f"Loading optimizer and scheduler: {checkpoint_path} (resume: {resume}") | |
if checkpoint_path is not None: | |
if resume: | |
checkpoint_path = checkpoint_path.replace(".pt", "_optim.pt") | |
self._check_checkpoint_exists(checkpoint_path) | |
if distributed.get_rank() == 0: | |
log.info(f"Loading checkpoint (local): {checkpoint_path}") | |
state_dict = torch.load( | |
checkpoint_path, map_location=lambda storage, loc: storage, weights_only=False | |
) | |
log.success(f"Complete loading checkpoint (local): {checkpoint_path}") | |
log.info("- Loading the optimizer (FSDP scatter)...") | |
else: | |
state_dict = { | |
"optimizer": None, | |
"scheduler": None, | |
} | |
distributed.barrier() | |
sharded_optimizer_state_dict = scatter_full_optim_state_dict( # <---- FSDP | |
state_dict["optimizer"], | |
fsdp_model, | |
) | |
log.info("- Loading the optimizer (FSDP load_state_dict)...") | |
log.info(optimizer.load_state_dict(sharded_optimizer_state_dict)) | |
log.critical("Skip loading the scheduler...") | |
return | |
log.info("- Loading the scheduler...") | |
scheduler.load_state_dict(state_dict["scheduler"]) | |
def get_optim_scheduler_state(self, optim, fsdp_model, scheduler): | |
with FSDP.state_dict_type( | |
fsdp_model, | |
StateDictType.FULL_STATE_DICT, | |
FullStateDictConfig(offload_to_cpu=True, rank0_only=True), | |
FullOptimStateDictConfig(offload_to_cpu=True, rank0_only=True), | |
): | |
optim_statedict = FSDP.full_optim_state_dict(fsdp_model, optim) | |
scheduler_statedict = scheduler.state_dict() | |
return { | |
"optimizer": optim_statedict, | |
"scheduler": scheduler_statedict, | |
} | |
def save( | |
self, | |
model: Model, | |
optimizer: torch.optim.Optimizer, | |
scheduler: torch.optim.lr_scheduler.LRScheduler, | |
grad_scaler: torch.amp.GradScaler, | |
iteration: int, | |
async_saving: bool = True, | |
) -> None: | |
"""Save network weights, optimizer parameters, scheduler parameters to a checkpoint. | |
Args: | |
model (Model): The PyTorch model. | |
optimizer (torch.optim.Optimizer): The model optimizer. | |
scheduler (torch.optim.lr_scheduler.LRScheduler): The optimization scheduler. | |
grad_scaler (torch.amp.GradScaler): The gradient scaler (for mixed precision training). | |
iteration (int): Current iteration number. | |
""" | |
self.callbacks.on_save_checkpoint_start(model, iteration) | |
model_state_dict = model.state_dict_model() | |
optim_scheduler_state_dict = self.get_optim_scheduler_state(optimizer, model.model, scheduler) | |
torch.cuda.empty_cache() | |
state_dict = dict( | |
iteration=iteration, | |
) | |
self.callbacks.on_save_checkpoint(model, state_dict=state_dict) | |
postfix, replicate_idx, shard_idx, total_ema_num = model.get_ckpt_postfix() | |
if replicate_idx == 0 and shard_idx == 0: | |
pass # save whole; it is rank0 | |
elif replicate_idx < total_ema_num and shard_idx == 0: | |
model_state_dict["model"] = None # only save ema | |
optim_scheduler_state_dict = None | |
state_dict = None | |
else: | |
return | |
checkpoint_file = f"iter_{iteration:09}{postfix}.pt" | |
if async_saving: | |
# Wait for previous saver thread to end. | |
if self.save_thread: | |
self.save_thread.join() | |
# Run the checkpoint saver in a separate thread. | |
self.save_thread = threading.Thread( | |
target=self._save_worker_local, | |
daemon=False, | |
args=( | |
model_state_dict, | |
optim_scheduler_state_dict, | |
state_dict, | |
checkpoint_file, | |
distributed.get_rank(), | |
), | |
) | |
self.save_thread.start() | |
log.info("checkpoint saving from an async thread") | |
else: | |
torch.cuda.empty_cache() | |
# Run the checkpoint saver in the current thread. | |
self._save_worker_local( | |
model_state_dict, optim_scheduler_state_dict, state_dict, checkpoint_file, distributed.get_rank() | |
) | |
log.info("checkpoint saved within the main thread") | |
del model_state_dict, optim_scheduler_state_dict, state_dict | |
gc.collect() | |
torch.cuda.empty_cache() | |
self.callbacks.on_save_checkpoint_end(model=None, iteration=iteration) | |
def _save_worker_local( | |
self, | |
model_state_dict: dict[str, torch.Tensor], | |
optim_scheduler_state_dict: dict[str, torch.Tensor], | |
state_dict: dict[str, torch.Tensor], | |
checkpoint_file: str, | |
rank: int = 0, | |
) -> None: | |
"""Worker to save checkpoint to local disk, spawned with a child thread (runs in parallel with the training). | |
Args: | |
state_dict (dict[str, torch.Tensor]): The state dict of the model/optimizer/scheduler. | |
checkpoint_file (str): The file name of the model checkpoint. | |
rank (int): GPU device (default: 0). | |
""" | |
checkpoint_path = os.path.join(self.checkpoint_dir_local, checkpoint_file) | |
os.makedirs(self.checkpoint_dir_local, exist_ok=True) | |
try: | |
model_state_dict, ema_model_state_dict = model_state_dict["model"], model_state_dict["ema"] | |
if model_state_dict is not None: | |
torch.save(model_state_dict, checkpoint_path.replace(".pt", "_reg_model.pt")) | |
if ema_model_state_dict is not None: | |
torch.save(ema_model_state_dict, checkpoint_path.replace(".pt", "_ema_model.pt")) | |
if optim_scheduler_state_dict is not None: | |
torch.save(optim_scheduler_state_dict, checkpoint_path.replace(".pt", "_optim.pt")) | |
if state_dict is not None: | |
torch.save(state_dict, checkpoint_path) | |
if rank == 0: | |
self._write_latest_checkpoint_file(checkpoint_file) | |
log.success(f"Saved checkpoint (local): {checkpoint_path}") | |
iteration = int(checkpoint_file.replace("iter_", "").replace(".pt", "")) | |
self.callbacks.on_save_checkpoint_success(iteration=iteration) | |
except Exception as e: # noqa: BLE001 | |
log.exception(f"Checkpoint failed to save (local): {e}") | |
def load( | |
self, | |
model: Model, | |
optimizer: torch.optim.Optimizer | None = None, | |
scheduler: torch.optim.lr_scheduler.LRScheduler | None = None, | |
grad_scaler: torch.amp.GradScaler | None = None, | |
) -> int: | |
"""Load network weights and optimizer states from a checkpoint in a single process. | |
The priority of the checkpoint loading logic is: | |
1. Attempt to resume training if possible by looking for latest_checkpoint.txt under the same name. | |
2. If no latest checkpoint were found, it loads the model weights specified by config_checkpoint.path. | |
- This is typically used for inference mode. | |
- If config_checkpoint.load_optimizer_state is True, then also load the optimizer and scheduler states. | |
3. If none of the above, randomly initialize the model parameters and train from scratch. | |
Args: | |
model (FSDPDiffModle): The PyTorch model. | |
optimizer (torch.optim.Optimizer | None): The model optimizer (default: None). | |
scheduler (torch.optim.lr_scheduler.LRScheduler | None): The optimization scheduler (default: None). | |
grad_scaler (torch.amp.GradScaler | None): The gradient scaler (for mixed precision training). | |
Returns: | |
iteration (int): the iteration number to start/resume from. | |
""" | |
self.callbacks.on_load_checkpoint_start(model) | |
del optimizer, grad_scaler | |
checkpoint_path, resume = self._load_ckpt_file_during_init() | |
iteration = 0 | |
if checkpoint_path is not None: | |
self._check_checkpoint_exists(checkpoint_path) | |
log.info(f"Loading checkpoint (local): {checkpoint_path}") | |
state_dict = torch.load(checkpoint_path, map_location=lambda storage, loc: storage, weights_only=False) | |
log.success(f"Complete loading checkpoint (local): {checkpoint_path}") | |
self.callbacks.on_load_checkpoint(model, state_dict=state_dict) | |
if resume: | |
iteration = state_dict["iteration"] | |
log.success("Done with loading the checkpoint.") | |
else: | |
log.info("Training from scratch.") | |
torch.cuda.empty_cache() | |
self.callbacks.on_load_checkpoint_end(model) | |
if scheduler is not None: | |
scheduler.last_epoch = iteration | |
log.critical(f"resume scheduler from {iteration}", rank0_only=False) | |
return iteration | |
def _read_latest_checkpoint_file(self) -> str | None: | |
"""Get the file name of the latest saved checkpoint. If it doesn't exist, return None. | |
Returns: | |
checkpoint_file (str | None): file name of the latest saved checkpoint. | |
""" | |
checkpoint_file = None | |
latest_path = os.path.join(self.checkpoint_dir_local, "latest_checkpoint.txt") | |
if os.path.isfile(latest_path): | |
checkpoint_file = open(latest_path).read().strip() | |
if checkpoint_file is None: | |
log.warning(f"Latest ckpt file not found: {latest_path}") | |
else: | |
log.info(f"Found latest checkpoint: {checkpoint_file}") | |
return checkpoint_file | |
def _write_latest_checkpoint_file(self, checkpoint_file: str) -> None: | |
"""Track the file name of the latest saved checkpoint. | |
Args: | |
checkpoint_file (str): file name of the latest saved checkpoint. | |
""" | |
content = f"{checkpoint_file}\n" | |
latest_path = os.path.join(self.checkpoint_dir_local, "latest_checkpoint.txt") | |
with open(latest_path, "w") as file: | |
file.write(content) | |
def _check_checkpoint_exists(self, checkpoint_path: str, is_raise: bool = True) -> None: | |
"""If the file checkpoint_path does not exist, raise an error. | |
Args: | |
checkpoint_path (str): full path to the checkpoint. | |
""" | |
if not os.path.exists(checkpoint_path): | |
if is_raise: | |
raise FileNotFoundError(f"File not found (local): {checkpoint_path}") | |
return False | |
return True | |
def finalize(self) -> None: | |
"""Finalize the checkpointer.""" | |
if self.save_thread: | |
self.save_thread.join() | |
class FSDPInferenceCheckpointer: | |
def __init__( | |
self, | |
ckpt_path: str, | |
strict_resume: bool = True, | |
): | |
self.ckpt_path = ckpt_path | |
self.strict_resume = strict_resume | |
def load_model_during_init(self, model, is_ema=False, ema_id: int = 0): | |
del ema_id | |
if is_ema: | |
log.warning("EMA model is not supported in inference mode.") | |
return | |
assert easy_io.exists(self.ckpt_path) | |
log.info(f"Loading from {self.ckpt_path}") | |
state_dict = torch.load(self.ckpt_path, map_location=lambda storage, loc: storage, weights_only=False) | |
if self.strict_resume: | |
log.info(model.load_state_dict(state_dict, strict=self.strict_resume)) | |
else: | |
log.critical("\t Using non-strict model") | |
from cosmos_predict1.diffusion.training.utils.checkpointer import non_strict_load_model | |
log.info(non_strict_load_model(model, state_dict)) | |
log.info("-finish model loading") | |
def load_optim_scheduler_during_init(self, *args, **kwargs): | |
""" | |
We do not do load in inference mode. The function is here to maintain the same interface to avoid errors. | |
""" | |
pass | |
def save(self, *args, **kwargs): | |
""" | |
We do not save anything in inference mode. The function is here to maintain the same interface to avoid errors. | |
""" | |
pass | |
def load(self, *args, **kwargs): | |
""" | |
We do not do load in inference mode. The function is here to maintain the same interface to avoid errors. | |
""" | |
return 0 | |